background image

DATA  SHEET

Product specification

Supersedes data of  1996 Dec 18

File under Integrated Circuits, IC03

1999 Oct 28

INTEGRATED CIRCUITS

PCA3351C; 52C; 53C;

PCD3351A; 52A; 53A

8-bit microcontrollers with DTMF

generator and 128 bytes EEPROM

background image

1999 Oct 28

2

Philips Semiconductors

Product specification

8-bit microcontrollers with DTMF generator

and 128 bytes EEPROM

PCA3351C; 52C; 53C;

PCD3351A; 52A; 53A

CONTENTS

1

FEATURES

2

GENERAL DESCRIPTION

3

ORDERING INFORMATION

4

BLOCK DIAGRAM

5

PINNING INFORMATION

5.1

Pinning

5.2

Pin description

6

FREQUENCY GENERATOR

6.1

Frequency generator derivative registers

6.2

Melody output (P1.7/MDY)

6.3

Frequency registers

6.4

DTMF frequencies

6.5

Modem frequencies

6.6

Musical scale frequencies

7

EEPROM AND TIMER 2 ORGANIZATION

7.1

EEPROM registers

7.2

EEPROM latches

7.3

EEPROM flags

7.4

EEPROM macros

7.5

EEPROM access

7.6

Timer 2

8

DERIVATIVE INTERRUPTS

9

TIMING

10

RESET

11

IDLE MODE

12

STOP MODE

13

INSTRUCTION SET RESTRICTIONS

14

OVERVIEW OF PORT AND

POWER-ON-RESET CONFIGURATIONS

15

SUMMARY OF DERIVATIVE REGISTERS

16

HANDLING

17

LIMITING VALUES

18

DC CHARACTERISTICS

19

AC CHARACTERISTICS

20

PACKAGE OUTLINES

21

SOLDERING

21.1

Reflow soldering

21.2

Wave soldering

21.3

DIP

21.4

Repairing soldered joints

22

DEFINITIONS

23

LIFE SUPPORT APPLICATIONS

background image

1999 Oct 28

3

Philips Semiconductors

Product specification

8-bit microcontrollers with DTMF generator

and 128 bytes EEPROM

PCA3351C; 52C; 53C;

PCD3351A; 52A; 53A

1

FEATURES

8-bit CPU, ROM, RAM, EEPROM and I/O; all in one

(28-lead or 32-lead) package

ROM:

– 2 kbytes (PCA3351C and PCD3351A)

– 4 kbytes (PCA3352C and PCD3352A)

– 6 kbytes (PCA3353C and PCD3353A)

RAM:

– 64 bytes (PCA3351C and PCD3351A)

– 128 bytes (PCA3352C, PCD3352A, PCA3353C and

PCD3353A)

128 bytes Electrically Erasable Programmable

Read-Only Memory (EEPROM)

Over 100 instructions (based on MAB8048) all of

1 or 2 cycles

20 quasi-bidirectional I/O port lines

8-bit programmable Timer/event counter 1

8-bit reloadable Timer 2

Three single-level vectored interrupts:

– external

– 8-bit programmable Timer/event counter 1

– derivative; triggered by reloadable Timer 2

Two test inputs, one of which also serves as the external

interrupt input

DTMF, modem, musical tone generator

Reference for supply and temperature-independent

tone output

Filtering for low output distortion (CEPT compatible)

Melody output for ringer application

Power-on-reset

Stop and Idle modes

Supply voltage: 1.8 to 6 V (DTMF tone output and

EEPROM erase/write from 2.5 V)

Clock frequency: 1 to 16 MHz (3.58 MHz for DTMF

suggested)

Operating ambient temperature:

25 to +70

°

C or

0 to 50

°

C

Manufactured in silicon gate CMOS process.

2

GENERAL DESCRIPTION

This data sheet details the specific properties of the

devices referred to. The shared properties of the

PCD33xxA family of microcontrollers are described in the

“PCD33xxA family” data sheet, which should be read in

conjunction with this publication.

‘PCA3351C; 52C; 53C’ denotes the types PCA3351C,

PCA3352C and PCA3353C. Unless specified, these

types will hereafter be referred to collectively as

‘PCA335xC’.

‘PCD3351A; 52A; 53A’ denotes the types PCD3351A,

PCD3352A, PCD3353A. Unless specified, these types

will hereafter be referred to collectively as ‘PCD335xA’.

The PCA335xC and PCD335xA are microcontrollers

designed primarily for telephony applications. They

include an on-chip generator for dual tone multifrequency

(DTMF), modem and musical tones. In addition to dialling,

generated frequencies can be made available as square

waves for melody generation, providing ringer operation.

The PCA335xC and PCD335xA also incorporate

128 bytes of EEPROM, permitting data storage without

battery backup. The EEPROM can be used for storing

telephone numbers, particularly for implementing redial

functions.

The PCA335xC and PCD335xA can be emulated with the

OTP microcontrollers PCD3755A and PCD3755E.

See Chapter 14, Table 25.

The instruction set is similar to that of the MAB8048 and is

a sub-set of that listed in the

“PCD33xxA family” data

sheet.

The differences between PCA335xC and PCD335xA are

shown in Table 1.

Table 1

Differences: PCA335xC and PCD335xA

Note

1. See Chapter 14, Table 26.

TYPE

V

POR

AMBIENT

TEMP. RANGE

PCA335xC

fixed at 2.0 V

±

0.3 V

0 to 50

°

C

PCD335xA

(1.2 to 3.6 V)

±

0.5 V

(1)

25 to +70

°

C

background image

1999 Oct 28

4

Philips Semiconductors

Product specification

8-bit microcontrollers with DTMF generator

and 128 bytes EEPROM

PCA3351C; 52C; 53C;

PCD3351A; 52A; 53A

3

ORDERING INFORMATION

Note

1. The types:

a) PCA335xC denotes: PCA3351C, PCA3352C or PCA3353C.

b) PCD335xA denotes: PCD3351A, PCD3352A or PCD3353A.

TYPE

NUMBER

(1)

PACKAGE

NAME

DESCRIPTION

VERSION

PCA335xCP

DIP28

plastic dual in-line package; 28 leads (600 mil)

SOT117-1

PCD335xAP

PCA335xCT

SO28

plastic small outline package; 28 leads; body width 7.5 mm

SOT136-1

PCD335xAT

PCA335xCH

LQFP32

plastic low profile quad flat package; 32 leads; body 7

×

7

×

1.4 mm

SOT358-1

PCD335xAH

background image

1999

Oct

28

5

Philips Semiconductors

Product specification

8-bit

microcontrollers

with

DTMF

gener

ator

and 128 b

ytes EEPR

OM

PCA3351C; 52C; 53C;

PCD3351A; 52A; 53A

This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in

_

white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in

white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...

4

BLOCK DIA

GRAM

handbook, full pagewidth

MLA537

PORT 0

FLIP-FLOP

PORT 0

BUFFER

HIGHER

PROGRAM

COUNTER

LOWER

PROGRAM

COUNTER

PROGRAM

STATUS

WORD

MEMORY

BANK

FLIP-FLOPS

6 kbytes

(PCD3353C; 53A)

4 kbytes

(PCD3352C; 52A)

2 kbytes

(PCD3351C; 51A)

128 bytes

(PCD3352C; 52A; 53C; 53A)

64 bytes

(PCD3351C; 51A)

DECODE

RESIDENT ROM

5

8

8

8

8

P0.0 to P0.7

8

8

8

8

8

8

TIMER/

EVENT

COUNTER

32

INTERNAL

CLOCK

FREQ.

   30

T1

PORT 1

BUFFER

PORT 1

FLIP-FLOP

P1.7/MDY P1.0 to P1.6

8

PORT 2

BUFFER

PORT 2

FLIP-FLOP

P2.0 to P2.3

4

4

7

8

MELODY

CONTROL

REGISTER

8

TONE

FILTER

OSCILLATOR

RAM

ADDRESS

REGISTER

ACCUMULATOR

TEMPORARY

REGISTER 1

TEMPORARY

REGISTER 2

ARITHMETIC

DECIMAL

ADJUST

CONTROL AND TIMING

XTAL2

XTAL1

RESET

CE/T0

STOP

IDLE

INTERRUPT

INITIALIZE

MULTIPLEXER

8 LEVEL STACK

(VARIABLE LENGTH)

OPTIONAL SECOND

REGISTER BANK

DATA STORE

D

E

C

O

D

E

REGISTER 0

REGISTER 1

REGISTER 2

REGISTER 3

REGISTER 4

REGISTER 5

REGISTER 6

REGISTER 7

timer interrupt

external interrupt

RESIDENT RAM ARRAY

derivative

interrupt

8

LOGIC UNIT

8

INSTRUCTION

REGISTER

AND

DECODER

CONDITIONAL

BRANCH

LOGIC

CE/T0

TIMER

FLAG

CARRY

ACC

ACC BIT

TEST

T1

LGF

REGISTER

8

HGF

REGISTER

8

SINE WAVE

GENERATOR

INTERRUPT

LOGIC

8

EEPROM

DATA

TRANSFER

8

EEPROM

ADDRESS

REGISTER

8

EEPROM

CONTROL

REGISTER

8

TIMER 2

REGISTER

8

TIMER 2

RELOAD

REGISTER

8

EEPROM

PCA3351C

PCA3352C

PCA3353C

PCD3351A

PCD3352A

PCD3353A

POWER-ON-RESET

VPOR

RESET

Fig.1  Block diagram.

background image

1999 Oct 28

6

Philips Semiconductors

Product specification

8-bit microcontrollers with DTMF generator

and 128 bytes EEPROM

PCA3351C; 52C; 53C;

PCD3351A; 52A; 53A

5

PINNING INFORMATION

5.1

Pinning

Fig.2  Pin configuration for DIP28 (SOT117-1) and SO28 (SOT136-1).

handbook, halfpage

1

2

3

4

5

6

7

8

9

10

11

12

13

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

P0.1

P0.2

P0.3

P0.4

P0.5

P0.6

P0.7

T1

XTAL1

XTAL2

RESET

CE/T0

P1.0

P1.1

P0.0

P2.3

P2.2

P2.1

TONE

VSS

VDD

P2.0

P1.7/MDY

P1.6

P1.5

P1.4

P1.3

P1.2

PCA335xC

PCD335xA

(1)

MLA538

(1) PCA335xC denotes:

PCA3351C, PCA3352C or

PCA3353C.

PCD335xA denotes:

PCD3351A, PCD3352A or

PCD3353A.

Fig.3  Pin configuration for LQFP32 (SOT358-1).

handbook, full pagewidth

MGB795

1

2

3

4

5

6

7

8

24

23

22

21

20

19

18

17

9

10

11

12

13

14

15

16

32

31

30

29

28

27

26

25

n.c.

P0.5

P0.6

P0.7

T1

XTAL1

XTAL2

RESET

CE/T0

P1.0

P1.1

P1.2

P1.3

P1.4

P1.5

n.c.

P1.6

P2.0

P2.1

P2.2

P2.3

P0.0

n.c.

P0.1

P0.2

P0.3

P0.4

TONE

VSS

VDD

P1.7/MDY

n.c.

PCA335xCH

PCD335xAH

(1)

(1) PCA335xCH denotes:

PCA3351CH, PCA3352CH or

PCA3353CH.

PCD335xAH denotes:

PCD3351AH, PCD3352AH or

PCD3353AH.

background image

1999 Oct 28

7

Philips Semiconductors

Product specification

8-bit microcontrollers with DTMF generator

and 128 bytes EEPROM

PCA3351C; 52C; 53C;

PCD3351A; 52A; 53A

5.2

Pin description

Table 2

 SOT117-1 and SOT136-1 packages (for information on parallel I/O ports, see Chapter 14)

Table 3

 SOT358-1 package (for information on parallel I/O ports, see Chapter 14)

SYMBOL

PIN

TYPE

DESCRIPTION

P0.1 to P0.7

1 to 7

I/O

7 bits of Port 0: 8-bit quasi-bidirectional I/O port

T1

8

I

Test 1 or count input of 8-bit Timer/event counter 1

XTAL1

9

I

crystal oscillator or external clock input

XTAL2

10

O

crystal oscillator output

RESET

11

I

reset input

CE/T0

12

I

Chip Enable or Test 0

P1.0 to P1.6

13 to 19

I/O

7 bits of Port 1: 8-bit quasi-bidirectional I/O port

P1.7/MDY

20

I/O

1 bit of Port 1: 8-bit quasi-bidirectional I/O port; or melody output

P2.0

21

I/O

1 bit of Port 2: 4-bit quasi-bidirectional I/O port

V

SS

22

P

ground

TONE

23

O

DTMF output

V

DD

24

P

positive supply voltage

P2.1 to P2.3

25 to 27

I/O

3 bits of Port 2: 4-bit quasi-bidirectional I/O port

P0.0

28

I/O

1 bit of Port 0: 8-bit quasi-bidirectional I/O port

SYMBOL

PIN

TYPE

DESCRIPTION

n.c.

1

not connected

P0.5 to P0.7

2 to 4

I/O

3 bits of Port 0: 8-bit quasi-bidirectional I/O port

T1

5

I

Test 1 or count input of 8-bit Timer/event counter 1

XTAL1

6

I

crystal oscillator or external clock input

XTAL2

7

O

crystal oscillator output

RESET

8

I

reset input

CE/T0

9

I

Chip Enable or Test 0

P1.0 to P1.2

10 to 12

I/O

3 bits of Port 1: 8-bit quasi-bidirectional I/O port

n.c.

13

not connected

P1.3 to P1.5

14 to 16

I/O

3 bits of Port 1: 8-bit quasi-bidirectional I/O port

n.c.

17

not connected

P1.6

18

I/O

1 bit of Port 1: 8-bit quasi-bidirectional I/O port

P1.7/MDY

19

I/O

1 bit of Port 1: 8-bit quasi-bidirectional I/O port; or melody output

P2.0

20

I/O

1 bit of Port 2: 4-bit quasi-bidirectional I/O port

V

SS

21

P

ground

TONE

22

O

DTMF output

V

DD

23

P

positive supply voltage

P2.1 to P2.3

24 to 26

I/O

3 bits of Port 2: 4-bit quasi-bidirectional I/O port

P0.0

27

I/O

1 bit of Port 0: 8-bit quasi-bidirectional I/O port

n.c.

28

not connected

P0.1 to P0.4

29 to 32

I/O

4 bits of Port 0: 8-bit quasi-bidirectional I/O port

background image

1999 Oct 28

8

Philips Semiconductors

Product specification

8-bit microcontrollers with DTMF generator

and 128 bytes EEPROM

PCA3351C; 52C; 53C;

PCD3351A; 52A; 53A

6

FREQUENCY GENERATOR

A versatile frequency generator section is provided (see

Fig.4). For normal operation, use a 3.58 MHz quartz

crystal or PXE resonator. The frequency generator

includes precision circuitry for dual tone multifrequency

(DTMF) signals, which is typically used for tone dialling

telephone sets.

Their frequencies are provided in purely sinusoidal form on

the TONE output or as square waves on the port line

P1.7/MDY.

The TONE output can alternatively issue twelve modem

frequencies for data rates between 300 and 1200 bits/s.

In addition to DTMF and modem frequencies, two octaves

of musical scale in steps of semitones are available.

When no tones are generated the TONE output is in

3-state mode.

6.1

Frequency generator derivative registers

6.1.1

H

IGH AND

L

OW

G

ROUP

F

REQUENCY REGISTERS

Table 4 gives the addresses, symbols and access types of the High Group Frequency (HGF) and Low Group Frequency

(LGF) registers.

Table 4

Hexadecimal addresses, symbols, access types and bit symbols of the frequency registers

6.1.2

M

ELODY

C

ONTROL

R

EGISTER

(MDYCON)

Table 5

Melody Control Register, MDYCON (address 13H; access type R/W)

Table 6

Description of MDYCON bits

REGISTER

ADDRESS

REGISTER

SYMBOL

ACCESS

TYPE

BIT SYMBOLS

 

7

 

6

 

5

 

4

 

3

 

2

 

1

 

0

11H

HGF

W

H7

H6

H5

H4

H3

H2

H1

H0

12H

LGF

W

L7

L6

L5

L4

L3

L2

L1

L0

 

7

 

6

 

5

 

4

 

3

 

2

 

1

 

0

0

0

0

0

0

0

0

EMO

BIT

SYMBOL

DESCRIPTION

7 to 1

These bits are set to a logic 0.

0

EMO

Enable Melody Output. If bit EMO = 0, then P1.7/MDY is a standard port line.

If bit EMO = 1, then P1.7/MDY is the melody output. EMO = 1 does not inhibit the port

instructions for P1.7/MDY. Therefore the state of both port line and flip-flop may be read

in and the port flip-flop may be written by port instructions. However, the port flip-flop of

P1.7/MDY must remain set to avoid conflicts between melody and port outputs.

When the HGF contents are zero while EMO = 1, P1.7/MDY is in the HIGH state.

background image

1999 Oct 28

9

Philips Semiconductors

Product specification

8-bit microcontrollers with DTMF generator

and 128 bytes EEPROM

PCA3351C; 52C; 53C;

PCD3351A; 52A; 53A

Fig.4  Block diagram of the frequency generator and melody output (P1.7/MDY) section.

handbook, full pagewidth

MLC416

HGF REGISTER

MELODY CONTROL

REGISTER

LGF REGISTER

INTERNAL BUS

8

8

8

8

SWITCHED

CAPACITOR

BANDGAP

VOLTAGE

REFERENCE

DIGITAL

SINE WAVE

SYNTHESIZER

DIGITAL

SINE WAVE

SYNTHESIZER

SWITCHED

CAPACITOR

LOW-PASS

FILTER

DAC

DAC

RC LOW-PASS

FILTER

TONE

PORT/MELODY

OUTPUT LOGIC

P1.7/

MDY

square wave

background image

1999 Oct 28

10

Philips Semiconductors

Product specification

8-bit microcontrollers with DTMF generator

and 128 bytes EEPROM

PCA3351C; 52C; 53C;

PCD3351A; 52A; 53A

6.2

Melody output (P1.7/MDY)

The melody output (P1.7/MDY) is very useful for

generating musical notes when a purely sinusoidal signal

is not required, such as for ringer applications.

The square wave (duty cycle =

12

23

 or 52%) will include

the attenuated harmonics of the base frequency, which is

defined by the contents of the HGF register (Table 4).

However, even higher frequency notes may be produced

since the low-pass filtering on the TONE output is not

applied to the P1.7/MDY output. This results in the

minimum decimal value x in the HGF register (see

equation in Section 6.3) being 2 for the P1.7/MDY output,

rather than 60 for the TONE output. A sinusoidal TONE

output is produced at the same time as the melody square

wave, but due to the filtering, the higher frequency sine

waves with x < 60 will not appear at the TONE output.

Since the melody output is shared with P1.7, the port

flip-flop of P1.7 has to be set HIGH before using the

melody output. This to avoid conflicts between melody and

port outputs. The melody output drive depends on the

configuration of port P1.7/MDY, see Chapter 14, Table 26.

6.3

Frequency registers

The two frequency registers HGF and LGF define two

frequencies. From these, the digital sine synthesizers

together with the Digital-to-Analog Converters (DACs)

construct two sine waves. Their amplitudes are precisely

scaled according to the bandgap voltage reference. This

ensures tone output levels independent of supply voltage

and temperature.

The amplitude of the Low Group Frequency sine wave is

attenuated by 2 dB compared to the amplitude of the High

Group Frequency sine wave.

The two sine waves are summed and then filtered by an

on-chip switched capacitor and RC low-pass filters. These

guarantee that all DTMF tones generated fulfil the CEPT

recommendations with respect to amplitude, frequency

deviation, total harmonic distortion and suppression of

unwanted frequency components.

The value 00H in a frequency register stops the

corresponding digital sine synthesizer. If both frequency

registers contain 00H, the whole frequency generator is

shut off, resulting in lower power consumption.

The frequency of the sine wave generated from either HGF

or LGF is a function of the decimal value ‘x’ held in the

register. The variables are related by the equation:

; where 60

x

255 for TONE output.

6.4

DTMF frequencies

Assuming an oscillator frequency f

xtal

= 3.58 MHz, the

DTMF standard frequencies can be implemented as

shown in Table 7.

The relationships between telephone keyboard symbols,

DTMF frequency pairs and the frequency register contents

are given in Table 8.

Table 7

DTMF standard frequencies and their

implementation; value = LGF, HGF contents

Table 8

Dialling symbols, corresponding DTMF

frequency pairs and frequency register contents

f

f

xtal

23 x

2

+

(

)

[

]

-----------------------------

=

VALUE

(HEX)

FREQUENCY (Hz)

 DEVIATION

STANDARD

GENERATED

(%)

(Hz)

DD

697

697.90

0.13

0.90

C8

770

770.46

0.06

0.46

B5

852

850.45

0.18

1.55

A3

941

943.23

0.24

2.23

7F

1209

1206.45

0.21

2.55

72

1336

1341.66

0.42

5.66

67

1477

1482.21

0.35

5.21

5D

1633

1638.24

0.32

5.24

TELEPHONE

KEYBOARD

SYMBOLS

DTMF FREQ.

PAIRS

(Hz)

LGF

VALUE

(HEX)

HGF

VALUE

(HEX)

0

(941, 1336)

A3

72

1

(697, 1209)

DD

7F

2

(697, 1336)

DD

72

3

(697, 1477)

DD

67

4

(770, 1209)

C8

7F

5

(770, 1336)

C8

72

6

(770, 1477)

C8

67

7

(852, 1209)

B5

7F

8

(852, 1336)

B5

72

9

(852, 1477)

B5

67

A

(697, 1633)

DD

5D

B

(770, 1633)

C8

5D

C

(852, 1633)

B5

5D

D

(941, 1633)

A3

5D

(941, 1209)

A3

7F

#

(941, 1477)

A3

67

background image

1999 Oct 28

11

Philips Semiconductors

Product specification

8-bit microcontrollers with DTMF generator

and 128 bytes EEPROM

PCA3351C; 52C; 53C;

PCD3351A; 52A; 53A

6.5

Modem frequencies

Again assuming an oscillator frequency f

xtal

= 3.58 MHz,

the standard modem frequencies can be implemented as

in Table 9. It is suggested to define the frequency by the

HGF register while the LGF register contains 00H,

disabling Low Group Frequency generation.

Table 9

Standard modem frequencies and their

implementation

Notes

1. Standard is V.21.

2. Standard is Bell 103.

3. Standard is Bell 202.

4. Standard is V.23.

6.6

Musical scale frequencies

Finally, two octaves of musical scale in steps of semitones

can be realized, again assuming an oscillator frequency

f

xtal

= 3.58 MHz (Table 10). It is suggested to define the

frequency by the HGF register while the LGF contains

00H, disabling Low Group Frequency generation

Table 10 Musical scale frequencies and their

implementation

Note

1. Standard scale based on A4 @ 440 Hz.

HGF

VALUE

(HEX)

 FREQUENCY (Hz)

 DEVIATION

MODEM

GENERATED

(%)

(Hz)

9D

980

(1)

978.82

0.12

1.18

82

1180

(1)

1179.03

0.08

0.97

8F

1070

(2)

1073.33

0.31

3.33

79

1270

(2)

1265.30

0.37

4.70

80

1200

(3)

1197.17

0.24

2.83

45

2200

(3)

2192.01

0.36

7.99

76

1300

(4)

1296.94

0.24

3.06

48

2100

(4)

2103.14

0.15

3.14

5C

1650

(1)

1655.66

0.34

5.66

52

1850

(1)

1852.77

0.15

2.77

4B

2025

(2)

2021.20

0.19

3.80

44

2225

(2)

2223.32

0.08

1.68

NOTE

HGF

VALUE

(HEX)

FREQUENCY (Hz)

STANDARD

(1)

GENERATED

D#5

F8

622.3

622.5

E5

EA

659.3

659.5

F5

DD

698.5

697.9

F#5

D0

740.0

741.1

G5

C5

784.0

782.1

G#5

B9

830.6

832.3

A5

AF

880.0

879.3

A#5

A5

923.3

931.9

B5

9C

987.8

985.0

C6

93

1046.5

1044.5

C#6

8A

1108.7

1111.7

D6

82

1174.7

1179.0

D#6

7B

1244.5

1245.1

E6

74

1318.5

1318.9

F6

6D

1396.9

1402.1

F#6

67

1480.0

1482.2

G6

61

1568.0

1572.0

G#6

5C

1661.2

1655.7

A6

56

1760.0

1768.5

A#6

51

1864.7

1875.1

B6

4D

1975.5

1970.0

C7

48

2093.0

2103.3

C#7

44

2217.5

2223.3

D7

40

2349.3

2358.1

D#7

3D

2489.0

2470.4

background image

1999 Oct 28

12

Philips Semiconductors

Product specification

8-bit microcontrollers with DTMF generator

and 128 bytes EEPROM

PCA3351C; 52C; 53C;

PCD3351A; 52A; 53A

7

EEPROM AND TIMER 2 ORGANIZATION

The PCD335xA and PCA335xC have 128 bytes of

Electrically Erasable Programmable Read-Only Memory

(EEPROM). Such non-volatile storage provides data

retention without the need for battery backup. In telecom

applications, the EEPROM is used for storing redial

numbers and for short dialling of frequently used numbers.

More generally, EEPROM may be used for customizing

microcontrollers, such as to include a PIN code or a

country code, to define trimming parameters, to select

application features from the range stored in ROM.

The most significant difference between a RAM and an

EEPROM is that a bit in EEPROM, once written to a

logic 1, cannot be cleared by a subsequent write

operation. Successive write accesses actually perform a

logical OR with the previously stored information.

Therefore, to clear a bit, the whole byte must be erased

and re-written with the particular bit cleared. Thus, an

erase-and-write operation is the EEPROM equivalent of a

RAM write operation

Whereas read access times to an EEPROM are

comparable to RAM access times, write and erase access

times are much slower at 5 ms each. To make these

operations more efficient, several provisions are available

in the PCD335xA and PCA335xC.

First, the EEPROM array is structured into 32 four-byte

pages (see Fig.5) permitting access to 4 bytes in parallel

(write page, erase/write page and erase page). It is also

possible to erase and write individual bytes. Finally, the

EEPROM address register provides auto-incrementing,

allowing very efficient read and write accesses to

sequential bytes.

To simplify the erase and write timing, the derivative 8-bit

down-counter (Timer 2) with reload register is provided.

In addition to EEPROM timing, Timer 2 can be used for

general real-time tasks, such as for measuring signal

duration and for defining pulse widths.

background image

1999 Oct 28

13

Philips Semiconductors

Product specification

8-bit microcontrollers with DTMF generator

and 128 bytes EEPROM

PCA3351C; 52C; 53C;

PCD3351A; 52A; 53A

Fig.5  Block diagram of the EEPROM and Timer 2.

handbook, full pagewidth

MGB824

2

TIMER 2 RELOAD REGISTER

EEPROM CONTROL REGISTER

EEPROM TEST REGISTER

EEPROM ADDRESS REGISTER

2 : 4 DECODER

8

8

TIMER 2 REGISTER (T2)

INTERNAL

BUS

F0

EEPROM LATCH 0

F1

EEPROM LATCH 1

F2

EEPROM LATCH 2

F3

EEPROM LATCH 3

5 : 32 DECODER

128-byte EEPROM ARRAY

(32 4-byte PAGES)

8

8

8

8

8

8

8

5

T2F set on

underflow

fxtal

1

480

background image

1999 Oct 28

14

Philips Semiconductors

Product specification

8-bit microcontrollers with DTMF generator

and 128 bytes EEPROM

PCA3351C; 52C; 53C;

PCD3351A; 52A; 53A

7.1

EEPROM registers

7.1.1

EEPROM C

ONTROL

R

EGISTER

(EPCR)

The behaviour of the EEPROM and Timer 2 section is defined by the EEPROM Control Register. See Tables 11, 12 and

13.

Table 11 EEPROM Control Register, EPCR (address 04H, access type R/W)

Table 12 Description of the EPCR bits

Table 13 Mode selection; X = don’t care

7

6

5

4

3

2

1

0

STT2

ET2I

T2F

EWP

MC3

MC2

MC1

0

BIT

SYMBOL

DESCRIPTION

7

STT2

Start T2. If STT2 = 0, then Timer 2 is stopped; T2 value held. If STT2 = 1, then T2

decrements from reload value.

6

ET2I

Enable T2 interrupt. If ET2I = 0, then T2F event cannot request interrupt. If ET2I = 1,

then T2F event can request interrupt.

5

T2F

Timer 2 flag. Set when T2 underflows (or by program); reset by program.

4

EWP

Erase or write in progress (EWP). Set by program (EWP starts EEPROM erase and/or

write and Timer 2). Reset at the end of EEPROM erase and/or write.

3

MC3

Mode control 3 to 1. These three bits in conjunction with bit EWP select the mode as

shown in Table 13.

2

MC2

1

MC1

0

This bit is set to a logic 0.

EWP

MC3

MC2

MC1

DESCRIPTION

0

0

0

0

read byte

0

0

1

0

increment mode

1

0

1

X

write page

1

1

0

0

erase/write page

1

1

1

1

erase page

X

0

0

1

not allowed

X

1

0

1

X

1

1

0

background image

1999 Oct 28

15

Philips Semiconductors

Product specification

8-bit microcontrollers with DTMF generator

and 128 bytes EEPROM

PCA3351C; 52C; 53C;

PCD3351A; 52A; 53A

7.1.2

EEPROM

ADDRESS REGISTER

(ADDR)

The EEPROM Address Register determines the EEPROM location to which an EEPROM access is directed.

As a whole, ADDR auto-increments after read and write cycles to EEPROM, but remains fixed after erase cycles. This

behaviour generates the correct ADDR contents for sequential read accesses and for sequential write or erase/write

accesses with intermediate page setup. Overflow of the 8-bit counter wraps around to zero.

Table 14 EEPROM Address Register, ADDR (address 01H, access type R/W)

Table 15 Description of ADDR bits

7.1.3

EEPROM D

ATA

R

EGISTER

(DATR)

Table 16 EEPROM Data Register, DATR (address 03H; access type R/W)

Table 17 Description of DATR bits

7.1.4

EEPROM

TEST REGISTER

(TST)

The EEPROM Test register is used for testing purposes during device manufacture. It must not be accessed by the

device user.

7

6

5

4

3

2

1

0

0

AD6

AD5

AD4

AD3

AD2

AD1

AD0

BIT

SYMBOL

DESCRIPTION

7

This bit is set to a logic 0.

6 to 2

AD6 to AD2

AD2 to AD6 select one of 32 pages.

1 to 0

AD1 to AD0

AD1 and AD0 are irrelevant during erase and write cycles. For read accesses, AD0 and

AD1 indicate the byte location within an EEPROM page. During page setup, finally, AD0

and AD1 select EEPROM Latch 0 to 3 whereas AD2 to AD6 are irrelevant. If increment

mode (Table 13) is active during page setup, the subcounter consisting of AD0 and AD1

increments after every write to an EEPROM latch, thus enhancing access to sequential

EEPROM latches. Incrementing stops when EEPROM Latch 3 is reached, i.e. when

AD0 and AD1 are both a logic 1.

7

6

5

4

3

2

1

0

D7

D6

D5

D4

D3

D2

D1

D0

BIT

SYMBOL

DESCRIPTION

7 to 0

D7 to D0

The EEPROM Data Register (DATR) is only a conceptual entity. A read operation from

DATR, reads out the EEPROM byte addressed by ADDR. On the other hand, a write

operation to DATR, loads data into the EEPROM latch (see Fig.5) defined by bits AD0

and AD1 of ADDR.

background image

1999 Oct 28

16

Philips Semiconductors

Product specification

8-bit microcontrollers with DTMF generator

and 128 bytes EEPROM

PCA3351C; 52C; 53C;

PCD3351A; 52A; 53A

7.2

EEPROM latches

The four EEPROM latches (EEPROM Latch 0 to 3; Fig.5)

cannot be read by user software. Due to their construction,

the latches can only be preset, but not cleared. Successive

write operations through DATR to the EEPROM latches

actually perform a logical OR with the previously stored

data in EEPROM. The EEPROM latches are reset at the

conclusion of any EEPROM cycle.

7.3

EEPROM flags

The four EEPROM flags (F0 to F3; Fig.5) cannot be

directly accessed by user software. An EEPROM flag is

set as a side-effect when the corresponding EEPROM

latch is written through DATR. The EEPROM flags are

reset at the conclusion of any EEPROM cycle.

7.4

EEPROM macros

The instruction sequence used in an EEPROM access

should be treated as an indivisible entity. Erroneous

programs result if ADDR, DATR, RELR or EPCR are

inadvertently changed during an EEPROM cycle or its

setup. Special care should be taken if the program may

asynchronously divert due to an interrupt. A new access to

the EEPROM may only be initiated when no write, erase or

erase/write cycles are in progress. This can be verified by

reading bit EWP (register EPCR).

For write, erase and erase/write cycles, it is assumed that

the Timer 2 Reload Register (RELR) has been loaded with

the appropriate value for a 5 ms delay, which depends on

f

xtal

(see Table 24). The end of a write, erase or erase/write

cycle will be signalled by a cleared EWP and by a Timer 2

interrupt provided that ET2I = 1 and that the derivative

interrupt is enabled.

7.5

EEPROM access

One read, one write, one erase/write and one erase

access are defined by bits EWP and MC1 to MC3 in the

EPCR register; see Table 11.

Read byte retrieves the EEPROM byte addressed by

ADDR when DATR is read. Read cycles are

instantaneous.

Write and erase cycles take 5 ms, however. Erase/write is

a combination of an erase and a subsequent write cycle,

consequently taking 10 ms.

As their names imply, write page, erase page and

erase/write page are applied to a whole EEPROM page.

Therefore, bits AD0 and AD1 of register ADDR (see

Table 14), defining the byte location within an EEPROM

page, are irrelevant during write and erase cycles.

However, write and erase cycles need not affect all bytes

of the page. The EEPROM flags F0 to F3 (see Fig.5)

determine which bytes within the EEPROM page are

affected by the erase and/or write cycles. A byte whose

corresponding EEPROM flag is zero remains unchanged.

With erase page, a byte is erased if its corresponding

EEPROM flag is set. With write page, data in EEPROM

Latch 0 to 3 (Fig.5) are ORed to the individual page bytes

if and only if the corresponding EEPROM flags are set.

In an erase/write cycle, F0 to F3 select which page bytes

are erased and ORed with the corresponding EEPROM

latches.

ORing, in this event, means that the EEPROM latches are

copied to the selected page bytes.

The described page-wise organization of erase and write

cycles allows up to four bytes to be individually erased or

written within 5 ms. This advantage necessitates a

preparation step, called page setup, before the actual

erase and/or write cycle can be executed.

Page setup controls EEPROM latches and EEPROM

flags. This will be described in the Sections 7.5.1 to 7.5.5.

7.5.1

P

AGE SETUP

Page setup is a preparation step required before write

page, erase page and erase/write page cycles.

As previously described, these page operations include

single-byte write, erase and erase/write as a special event.

EEPROM flags F0 to F3 determine which page bytes will

be affected by the mentioned page operations. EEPROM

Latch 0 to 3 must be preset through DATR to specify the

write cycle data to EEPROM and to set the EEPROM flags

as a side-effect. Obviously, the actual preset value of the

EEPROM latches is irrelevant for erase page. Preset of

one, two, three or all four EEPROM latches and the

corresponding EEPROM flags can be performed by

repeatedly defining ADDR and writing to DATR (see

Table 18).

If more than one EEPROM latch must be preset, the

subcounter consisting of AD0 and AD1 can be induced to

auto-increment after every write to DATR, thus stepping

through all EEPROM latches. For this purpose, increment

mode (Table 13) must be selected. Auto-incrementing

stops at EEPROM Latch 3. It is not mandatory to start at

EEPROM Latch 0 as in shown in Table 19.

Note that AD2 to AD6 are irrelevant during page setup.

They will usually specify the intended EEPROM page,

anticipating the subsequent page cycle.

background image

1999 Oct 28

17

Philips Semiconductors

Product specification

8-bit microcontrollers with DTMF generator

and 128 bytes EEPROM

PCA3351C; 52C; 53C;

PCD3351A; 52A; 53A

From now on, it will be assumed that AD2 to AD6 will

contain the intended EEPROM page address after page

setup.

Table 18 Page setup; preset

Table 19 Page setup; auto-incrementing

7.5.2

R

EAD BYTE

Since ADDR auto-increments after a read cycle regardless

of the page boundary, successive bytes can efficiently be

read by repeating the last instruction.

Table 20 Read byte

7.5.3

W

RITE PAGE

The write cycle performs a logical OR between the data in

the EEPROM latches and that in the addressed EEPROM

page. To actually copy the data from the EEPROM

INSTRUCTION

RESULT

MOV A, #addr

address of EEPROM latch

MOV ADDR, A

send address to ADDR

MOV A, #data

load write, erase/write or erase data

MOV DATR, A

send data to addressed EEPROM

latch

INSTRUCTION

RESULT

MOV A, #MC2

increment mode control word

MOV EPCR, A

select increment mode

MOV A, #baddr

EEPROM Latch 0 address

(AD0 = AD1 = 0)

MOV ADDR, A

send EEPROM Latch 0 address to

ADDR

MOV A, R0

load 1

st

byte from Register 0

MOV DATR, A

send 1

st

byte to EEPROM Latch 0

MOV A, R1

load 2

nd

byte from Register 1

MOV DATR, A

send 2

nd

byte to EEPROM Latch 1

MOV A, R2

load 3

rd

byte from Register 2

MOV DATR, A

send 3

rd

byte to EEPROM Latch 2

MOV A, R3

load 4

th

byte from Register 3

MOV DATR, A

send 4

th

byte to EEPROM Latch 3

INSTRUCTION

RESULT

MOV A, #RDADDR

load read address

MOV ADDR, A

send address to ADDR

MOV A, DATR

read EEPROM data

latches, the corresponding bytes in the page should

previously have been erased.

The EEPROM latches are preset as described in

Section 7.5.1. The actual transfer to the EEPROM is then

performed as shown in Table 21.

The last instruction also starts Timer 2. The data in the

EEPROM latches are ORed with that in the corresponding

page bytes within 5 ms. A single-byte write is simply a

special case of ‘write page’.

ADDR auto-increments after the write cycle. If AD0 and

AD1 addressed EEPROM Latch 3 prior to the write cycle,

ADDR will point to the next EEPROM page (by bits AD2

to AD6) and to EEPROM Latch 0 (by bits AD0 and AD1).

This allows efficient coding of multi-page write operations.

Table 21 Write page

7.5.4

E

RASE

/

WRITE PAGE

The EEPROM latches are preset as described in

Section 7.5.1. The page bytes corresponding to the

asserted flags (among F0 to F3) are erased and re-written

with the contents of the respective EEPROM latches.

The last instruction also starts Timer 2. Erasure takes

5 ms upon which Timer Register T2 reloads for another

5 ms cycle for writing. The top cycles together take 10 ms.

A single-byte erase/write is simply a special case of

‘erase/write page’.

ADDR auto-increments after the write cycle. If AD0 and

AD1 addressed EEPROM Latch 3 prior to the write cycle,

ADDR will point to the next EEPROM page (by AD2 to

AD6) and to EEPROM Latch 0 (by AD0 and AD1). This

allows efficient coding of multi-page erase/write

operations.

Table 22 Erase/write page

INSTRUCTION

RESULT

MOV A, #EWP + MC2

‘write page’ control word

MOV EPCR, A

start ‘write page’ cycle

INSTRUCTION

RESULT

MOV A, #EWP + MC3

‘erase/write page’ control word

MOV EPCR, A

start ‘erase/write page’ cycle

background image

1999 Oct 28

18

Philips Semiconductors

Product specification

8-bit microcontrollers with DTMF generator

and 128 bytes EEPROM

PCA3351C; 52C; 53C;

PCD3351A; 52A; 53A

7.5.5

E

RASE PAGE

The EEPROM flags are set as described in Section 7.5.1.

The corresponding page bytes are erased.

The last instruction also starts Timer 2. Erasure takes

5 ms. A single-byte erase is simply a special case of ‘erase

page’.

Note that ADDR does not auto-increment after an erase

cycle.

Table 23 Erase page

7.6

Timer 2

Timer 2 is a 8-bit down-counter decremented at a rate of

1

480

×

f

xtal

. It may be used either for EEPROM timing or as

a general purpose timer. Conflicts between the two

applications should be carefully avoided.

7.6.1

T

IMER

2

FOR

EEPROM

TIMING

When used for EEPROM timing, Timer 2 serves to

generate the 5 ms intervals needed for erasing or writing

the EEPROM. At the decrement rate of

1

480

×

f

xtal

, the

reload value for a 5 ms interval is a function of f

xtal

.

Table 24 summarizes the required reload values for a

number of oscillator frequencies.

Timer 2 is started by setting bit EWP in the EPCR.

The Timer Register T2 is loaded with the reload value from

RELR. T2 decrements to zero.

For an erase/write cycle, underflow of T2 indicates the end

of the erase operation. Therefore, Timer Register T2 is

reloaded from RELR for another 5 ms interval during

which the flagged EEPROM latches are copied to the

corresponding bytes in the page addressed by ADDR.

INSTRUCTION

RESULT

MOV A, #EWP + MC3 + MC2 + MC1

‘erase page’

control word

MOV EPCR, A

start ‘erase

page’ cycle

The second underflow of an erase/write cycle and the first

underflow of write page and erase page conclude the

corresponding EEPROM cycle. Timer 2 is stopped, T2F is

set whereas EWP and MC1 to MC3 are cleared.

Table 24 Reload values as a function of f

xtal

Note

1. The reload value is (5

×

10

3

×

1

480

×

f

xtal

)

1;

f

xtal

 in MHz.

7.6.2

T

IMER

2

AS A GENERAL PURPOSE TIMER

When used for purposes other than EEPROM timing,

Timer 2 is started by setting STT2. The Timer Register T2

(see Table 27) is loaded with the reload value from RELR.

T2 decrements to zero. On underflow, T2 is reloaded from

RELR, T2F is set and T2 continues to decrement.

Timer 2 can be stopped at any time by clearing STT2.

The value of T2 is then held and can be read out. After

setting STT2 again, Timer 2 decrements from the reload

value. Alternatively, it is possible to read T2 ‘on the fly’ i.e.

while Timer 2 is operating.

f

xtal

(MHz)

RELOAD VALUE

(1)

(HEX)

1

0A

2

14

3.58

25

6

3E

10

68

16

A6

background image

1999 Oct 28

19

Philips Semiconductors

Product specification

8-bit microcontrollers with DTMF generator

and 128 bytes EEPROM

PCA3351C; 52C; 53C;

PCD3351A; 52A; 53A

8

DERIVATIVE INTERRUPTS

One derivative interrupt event is defined. It is controlled by

bits T2F and ET2I in the EPCR (see Tables 11 and 12).

The derivative interrupt event occurs when T2F is set. This

request is honoured under the following circumstances:

No interrupt routine proceeds

No external interrupt request is pending

The derivative interrupt is enabled

ET2I is set.

The derivative interrupt routine must include instructions

that will remove the cause of the derivative interrupt by

explicitly clearing T2F. If the derivative interrupt is not

used, T2F may directly be tested by the program.

Obviously, T2F can also be asserted under program

control, e.g. to generate a software interrupt.

9

TIMING

Although the PCD335xA and PCA335xC operate over a

clock frequency range from 1 to 16 MHz, f

xtal

= 3.58 MHz

will usually be chosen to take full advantage of the

frequency generator section.

10 RESET

In addition to the conditions given in the

“PCD33XXA

Family” data sheet, all derivative registers are cleared in

the reset state.

11 IDLE MODE

In Idle mode, the frequency generator, the EEPROM and

the Timer 2 sections remain operative. Therefore, the

IDLE instruction may be executed while an erase and/or

write access to EEPROM is in progress.

12 STOP MODE

Since the oscillator is switched off, the frequency

generator, the EEPROM and the Timer 2 sections receive

no clock. It is suggested to clear both the HGF and the

LGF registers before entering Stop mode. This will cut off

the biasing of the internal amplifiers, considerably

reducing current requirements.

The Stop mode must not be entered while an erase

and/or write access to EEPROM is in progress. The STOP

instruction may only be executed when EWP in EPCR is

zero. The Timer 2 section is frozen during Stop mode.

After exit from Stop mode by a HIGH level on CE/T0,

Timer 2 proceeds from the held state.

13 INSTRUCTION SET RESTRICTIONS

For PCD3351A and PCA3351C only:

– ROM space being restricted to 2 kbytes, the

‘SEL MB1/2/3’ instructions would define non-existing

program memory banks and should therefore be

avoided.

– RAM space being restricted to 64 bytes, care should

be taken to avoid accesses to non-existing RAM

locations.

For PCD3352A and PCA3352C only:

– ROM space being restricted to 4 kbytes, the

‘SEL MB2/3’ instructions would define non-existing

program memory banks and should therefore be

avoided.

For PCD3353A and PCA3353Conly:

– ROM space being restricted to 6 kbytes, the

‘SEL MB3’ instructions would define non-existing

program memory banks and should therefore be

avoided.

For the PCD3352A, PCD3353A, PCA3352C and

PCA3353C, RAM space is restricted to 128 bytes, thus

care should be taken to avoid accesses to non-existing

RAM locations.

background image

1999 Oct 28

20

Philips Semiconductors

Product specification

8-bit microcontrollers with DTMF generator

and 128 bytes EEPROM

PCA3351C; 52C; 53C;

PCD3351A; 52A; 53A

14 OVERVIEW OF PORT AND POWER-ON-RESET

CONFIGURATIONS

The PCA335xC microcontrollers support one port and

Power-on-reset configuration which is compatible with

the OTP PCD3755E.

The PCD335xA microcontrollers support two port and

Power-on-reset configurations which can be chosen:

one is compatible with the OTP PCD3755A, the other is

compatible with the OTP PCD3755E.

Table 25 Available mask configurations

TYPE

CONFIGURATION

PCD3755A

PCD3755E

PCA3351C

X

PCA3352C

X

PCA3353C

X

PCD3351A

X

X

PCD3352A

X

X

PCD3353A

X

X

Table 26 Port and Power-on-Reset configurations

See note 1 and 2.

Notes

1. Port output drive: 1 = standard I/O; 2 = open-drain I/O, see

“PCD33xxA Family” data sheet.

2. Port state after reset: S = Set (HIGH) and R = Reset (LOW).

3. The melody output drive type is push-pull.

COVERED

BY OTP

PORT 0

PORT 1

PORT 2

V

POR

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

PCD3755A

1S 1S 1S 1S 1S 1S 1S 1S 1S 1S 1S 1S 1S 1S 1R 1R

(3)

2S

2S

2S

2S

1.3 V

PCD3755E

1S 1S 1S 1S 1S 1S 1S 1S 2S 2S 2S 2S 2S 2S 1S 1S

(3)

2S

1R

1R

1R

2.0 V

background image

1999 Oct 28

21

Philips Semiconductors

Product specification

8-bit microcontrollers with DTMF generator

and 128 bytes EEPROM

PCA3351C; 52C; 53C;

PCD3351A; 52A; 53A

15 SUMMARY OF DERIVATIVE REGISTERS

Table 27 Register map

16 HANDLING

Inputs and outputs are protected against electrostatic discharge in normal handling. However, it is good practice to take

normal precautions appropriate to handling MOS devices (see

“Data Handbook IC14, Section: Handling MOS devices”).

17 LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

ADDR.

(HEX)

REGISTER

7

6

5

4

3

2

1

0

R/W

00

not used

01

EEPROM Address Register

(ADDR)

0

AD6

AD5

AD4

AD3

AD2

AD1

AD0

R/W

02

not used

03

EEPROM Data Register

(DATR)

D7

D6

D5

D4

D3

D2

D1

D0

R/W

04

EEPROM Control Register

(EPCR)

STT2

ET21

TF2

EWP

MC3

MC2

MC1

0

R/W

05

Timer 2 Reload Register

(RELR)

R7

R6

R5

R4

R3

R2

R1

R0

R/W

06

Timer 2 Register

(T2)

T2.7

T2.6

T2.5

T2.4

T2.3

T2.2

T2.1

T2.0

R

07

Test Register

(TST)

only for test purposes; not to be accessed by the device user

08 to 10

not used

11

High Group Frequency Register

(HGF)

H7

H6

H5

H4

H3

H2

H1

H0

W

12

Low Group Frequency Register

(LGF)

L7

L6

L5

L4

L3

L2

L1

L0

W

13

Melody Control Register

(MDYCON)

0

0

0

0

0

0

0

EMO

R/W

14 to FF

not used

SYMBOL

PARAMETER

MIN.

MAX.

UNIT

V

DD

supply voltage

0.8

+7.0

V

V

I

all input voltages

0.5

V

DD

+ 0.5

V

I

I

DC input current

10

+10

mA

I

O

DC output current

10

+10

mA

P

tot

total power dissipation

125

mW

P

O

power dissipation per output

30

mW

I

SS

ground supply current

50

+50

mA

T

stg

storage temperature

65

+150

°

C

T

j

operating junction temperature

90

°

C

background image

1999 Oct 28

22

Philips Semiconductors

Product specification

8-bit microcontrollers with DTMF generator

and 128 bytes EEPROM

PCA3351C; 52C; 53C;

PCD3351A; 52A; 53A

18 DC CHARACTERISTICS

V

DD

= 1.8 to 6 V; V

SS

= 0 V; T

amb

= 0 to +50

°

C (PCA335xC) or

25 to +70

°

C (PCD335xA); all voltages with respect to

V

SS

; f

xtal

= 3.58 MHz; unless otherwise specified.

SYMBOL

PARAMETER

CONDITIONS

MIN.

TYP.

MAX.

UNIT

Supply

V

DD

supply voltage

see Fig.6

operating

note 1

1.8

6

V

RAM data retention in Stop

mode

1.0

6

V

I

DD

operating supply current

see Figs 7 and 8; note 2

V

DD

= 3 V; value HGF or LGF

0

0.8

1.6

mA

V

DD

= 3 V

0.35

0.7

mA

V

DD

= 5 V; f

xtal

= 10 MHz

1.5

4.0

mA

V

DD

= 5 V; f

xtal

= 16 MHz

2.4

6.0

mA

I

DD(idle)

supply current (Idle mode)

see Figs 9 and 10; note 2

V

DD

= 3 V; value HGF or LGF

0

0.7

1.4

mA

V

DD

= 3 V

0.25

0.5

mA

V

DD

= 5 V; f

xtal

= 10 MHz

1.1

3.4

mA

V

DD

= 5 V; f

xtal

= 16 MHz

1.7

5.0

mA

I

DD(stp)

supply current (Stop mode)

see Fig.11; note 3

V

DD

= 1.8 V; T

amb

= 25

°

C;

1.0

5.5

µ

A

V

DD

= 1.8 V; T

amb

= 70

°

C;

10

µ

A

Inputs

V

IL

LOW level input voltage

0

0.3V

DD

V

V

IH

HIGH level input voltage

0.7V

DD

V

DD

V

I

LI

input leakage current

V

SS

V

I

V

DD

1

1

µ

A

Port outputs

I

OL

LOW level port sink current

V

DD

= 3 V; V

O

= 0.4 V; see Fig.12

0.7

3.5

mA

I

OH

HIGH level pull-up output

source current

V

DD

= 3 V;  V

O

= 2.7 V; see Fig.13

10

30

µ

A

V

DD

= 3 V;  V

O

= 0 V; see Fig.13

140

300

µ

A

I

OH1

HIGH level push-pull output

source current

V

DD

= 3 V; V

O

= 2.6 V; see Fig.14

0.7

3.5

mA

Tone output (see Fig.15)

V

HG(RMS)

HGF voltage (RMS value)

158

181

205

mV

V

LG(RMS)

LGF voltage (RMS value)

125

142

160

mV

frequency deviation

0.6

0.6

%

V

DC

DC voltage level

0.5V

DD

V

Z

o

output impedance

100

500

G

v

pre-emphasis of group

1.5

2.0

2.5

dB

THD

total harmonic distortion

T

amb

= 25

°

C; note 5

25

dB

f

f

background image

1999 Oct 28

23

Philips Semiconductors

Product specification

8-bit microcontrollers with DTMF generator

and 128 bytes EEPROM

PCA3351C; 52C; 53C;

PCD3351A; 52A; 53A

Notes

1. TONE output, EEPROM erase and write require V

DD

2.5 V.

2. V

IL

= V

SS

; V

IH

= V

DD

; open-drain outputs connected to V

SS

; all other outputs open; value HGF = LGF = 0, unless

otherwise specified.

a) Maximum values: external clock at XTAL1 and XTAL2 open-circuit.

b) Typical values: T

amb

= 25

°

C; crystal connected between XTAL1 and XTAL2.

3. V

IL

= V

SS

; V

IH

= V

DD

; RESET, T1 and CE/T0 at V

SS

; crystal connected between XTAL1 and XTAL2; pins T1 and

CE/T0 at V

SS

.

4. Values are specified for DTMF frequencies only (CEPT).

5. Related to the Low Group Frequency (LGF) component (CEPT).

6. After final testing the value of each EEPROM bit is a logic 1, but this cannot be guaranteed after board assembly.

7. Verified on sampling basis.

8. Each device is tested on the condition: V

DD(min)

< V

POR

; to ensure a correct start-up, even for slow rising supply

voltages.

EEPROM (notes 1 and 6)

CY

t/w

endurance (erase/write

cycles)

note 7

10

5

t

ret

data retention time

10

years

Power-on-reset (see Fig.16)

V

POR

Power-on-reset level

PCD335xA

configuration as PCD3755A

0.8

1.3

1.8

V

PCD335xA

configuration as PCD3755E

1.5

2.0

2.5

V

PCA335xC

configuration as PCD3755E

1.7

(8)

2.0

2.3

V

Oscillator (see Fig.17)

g

m

transconductance

V

DD

= 5 V

0.2

0.4

1.0

mS

R

F

feedback resistor

0.3

1.0

3.0

M

SYMBOL

PARAMETER

CONDITIONS

MIN.

TYP.

MAX.

UNIT

background image

1999 Oct 28

24

Philips Semiconductors

Product specification

8-bit microcontrollers with DTMF generator

and 128 bytes EEPROM

PCA3351C; 52C; 53C;

PCD3351A; 52A; 53A

handbook, halfpage

MLA493

VDD (V)

1

3

5

7

fxtal

(MHz)

12

9

6

3

0

15

18

   guaranteed

operating range

Fig.6

Maximum clock frequency (f

xtal

) as a

function of supply voltage (V

DD

).

Fig.7

Typical operating supply current (I

DD

) as a

function of supply voltage (V

DD

).

Measured with crystal between XTAL1 and XTAL2.

handbook, halfpage

1

6

4

2

0

3

5

VDD (V)

7

MGB827

IDD

(mA)

16 MHz

3.58 MHz

HGF or LGF 

  0

10 MHz

3.58 MHz

Fig.8

Typical operating supply current (I

DD

) as a

function of clock frequency (f

xtal

).

Measured with function generator on XTAL1.

handbook, halfpage

6

0

2

2

4

1

MGB828

10

10

IDD

(mA)

fxtal (MHz)

3 V

5 V

Fig.9

Typical supply current in Idle mode (I

DD(idle)

)

as a function of supply voltage (V

DD

).

Measured with crystal between XTAL1 and XTAL2.

handbook, halfpage

1

6

4

2

0

3

5

VDD (V)

7

MGB829

IDD(idle)

(mA)

16 MHz

3.58 MHz

HGF or LGF 

  0

10 MHz

3.58 MHz

background image

1999 Oct 28

25

Philips Semiconductors

Product specification

8-bit microcontrollers with DTMF generator

and 128 bytes EEPROM

PCA3351C; 52C; 53C;

PCD3351A; 52A; 53A

Fig.10 Typical supply current in Idle mode

(I

DD(idle)

)as a function of clock frequency

(f

xtal

).

Measured with function generator on XTAL1.

handbook, halfpage

6

0

2

2

4

1

MGB830

10

10

IDD(idle)

(mA)

fxtal (MHz)

3 V

5 V

handbook, halfpage

1

6

4

3

1

5

2

0

3

5

VDD (V)

7

MGB826

IDD(stp)

(

µ

A)

Fig.11 Typical supply current in Stop mode

(I

DD(stp)

) as a function of supply voltage

(V

DD

).

Fig.12 Typical LOW level output sink current (I

OL

)

as a function of supply voltage (V

DD

).

V

O

= 0.4 V.

handbook, halfpage

1

12

8

4

0

3

5

VDD (V)

7

MGB831

IOL

(mA)

Fig.13 Typical HIGH level pull-up output source

current (I

OH

) as a function of supply voltage

(V

DD

).

handbook, halfpage

1

300

200

100

0

3

IOH

(

µ

A)

5

VDD (V)

7

MGB832

VO = 0 V

VO = 0.9VDD

background image

1999 Oct 28

26

Philips Semiconductors

Product specification

8-bit microcontrollers with DTMF generator

and 128 bytes EEPROM

PCA3351C; 52C; 53C;

PCD3351A; 52A; 53A

Fig.14 Typical HIGH level push-pull output source

current (I

OH1

) as a function of supply voltage

(V

DD

).

V

O

= V

DD

0.4 V.

handbook, halfpage

1

12

8

4

0

3

5

VDD (V)

7

MGB833

IOH1

(mA)

handbook, halfpage

MGB835

10 k

TONE

50 pF

µ

F

DEVICE TYPE NUMBER

(1)

VDD

VSS

(1) Device type number:

PCA3351C, PCA3352C, PCA3353C,

PCD3351A, PCD3352A or PCD3353A.

Fig.15  TONE output test circuit.

handbook, halfpage

25

6

4

2

0

25

75

70

Tamb (

°

C)

125

MGD495

VDD

(V)

VPOR = 1.3 V

VPOR = 2.0 V

Fig.16 Typical Power-on-reset level (V

POR

) as

function of ambient temperature (T

amb

).

handbook, halfpage

1

3

5

VDD (V)

7

10

1

MGB834

1

10

gm

(mS)

Fig.17 Typical transconductance (g

m

) as a function

of supply voltage (V

DD

).

background image

1999 Oct 28

27

Philips Semiconductors

Product specification

8-bit microcontrollers with DTMF generator

and 128 bytes EEPROM

PCA3351C; 52C; 53C;

PCD3351A; 52A; 53A

19 AC CHARACTERISTICS

V

DD

= 1.8 to 6 V; V

SS

= 0 V; T

amb

= 0 to +50

°

C (PCA335xC) or

25 to +70

°

C (PCD335xA); all voltages with respect to

V

SS

; unless otherwise specified.

SYMBOL

PARAMETER

CONDITIONS

MIN.

TYP.

MAX.

UNIT

t

r

rise time all outputs

V

DD

= 5 V;  T

amb

= 25

°

C; C

L

= 50 pF

30

ns

t

f

fall time all outputs

30

ns

f

xtal

clock frequency

see Fig.6

1

16

MHz

background image

1999 Oct 28

28

Philips Semiconductors

Product specification

8-bit microcontrollers with DTMF generator

and 128 bytes EEPROM

PCA3351C; 52C; 53C;

PCD3351A; 52A; 53A

20 PACKAGE OUTLINES

UNIT

A

max.

1

2

b

1

(1)

(1)

(1)

c

D

E

w

e

M

H

L

 REFERENCES

OUTLINE

VERSION

EUROPEAN

PROJECTION

ISSUE DATE

 IEC

 JEDEC

 EIAJ

mm

inches

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

SOT117-1

92-11-17

95-01-14

A  

min.

A  

max.

b

Z

max.

M

E

e

1

1.7

1.3

0.53

0.38

0.32

0.23

36.0

35.0

14.1

13.7

3.9

3.4

0.25

2.54

15.24

15.80

15.24

17.15

15.90

1.7

5.1

0.51

4.0

0.066

0.051

0.020

0.014

0.013

0.009

1.41

1.34

0.56

0.54

0.15

0.13

0.01

0.10

0.60

0.62

0.60

0.68

0.63

0.067

0.20

0.020

0.16

051G05

MO-015AH

M

H

c

(e  )

1

M

E

A

L

seating plane

A

1

w

M

b

1

e

D

A

2

Z

28

1

15

14

b

E

pin 1 index

0

5

10 mm

scale

 Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included. 

handbook, full pagewidth

DIP28: plastic dual in-line package; 28 leads (600 mil)

SOT117-1

background image

1999 Oct 28

29

Philips Semiconductors

Product specification

8-bit microcontrollers with DTMF generator

and 128 bytes EEPROM

PCA3351C; 52C; 53C;

PCD3351A; 52A; 53A

UNIT

A

max.

A

1

A

2

A

3

b

p

c

D

(1)

E

(1)

(1)

e

H

E

L

L

p

Q

Z

y

w

v

θ

 REFERENCES

OUTLINE

VERSION

EUROPEAN

PROJECTION

ISSUE DATE

 IEC

 JEDEC

 EIAJ

mm

inches

2.65

0.30

0.10

2.45

2.25

0.49

0.36

0.32

0.23

18.1

17.7

7.6

7.4

1.27

10.65

10.00

1.1

1.0

0.9

0.4

8

0

o

o

0.25

0.1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  

1.1

0.4

 SOT136-1

X

14

28

w

M

θ

A

A

1

A

2

b

p

D

H

E

L

p

Q

detail X

E

Z

c

L

v

M

A

e

15

1

(A  )

3

A

y

0.25

 075E06

 MS-013AE

pin 1 index

0.10

0.012

0.004

0.096

0.089

0.019

0.014

0.013

0.009

0.71

0.69

0.30

0.29

0.050

1.4

0.055

0.419

0.394

0.043

0.039

0.035

0.016

0.01

0.25

0.01

0.004

0.043

0.016

0.01

0

5

10 mm

scale

SO28: plastic small outline package; 28 leads; body width 7.5 mm

SOT136-1

95-01-24

97-05-22 

background image

1999 Oct 28

30

Philips Semiconductors

Product specification

8-bit microcontrollers with DTMF generator

and 128 bytes EEPROM

PCA3351C; 52C; 53C;

PCD3351A; 52A; 53A

UNIT

A

max.

A

1

A

2

A

3

b

p

c

E

(1)

e

H

E

L

L

p

Z

y

w

v

θ

 REFERENCES

OUTLINE

VERSION

EUROPEAN

PROJECTION

ISSUE DATE

 IEC

 JEDEC

 EIAJ

mm

1.60

0.20

0.05

1.45

1.35

0.25

0.4

0.3

0.18

0.12

7.1

6.9

0.8

9.15

8.85

0.9

0.5

7

0

o

o

0.25

0.1

1.0

0.2

DIMENSIONS (mm are the original dimensions)

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included. 

0.75

0.45

 SOT358 -1

95-12-19

97-08-04

D

(1)

(1)

(1)

7.1

6.9

H

D

9.15

8.85

E

Z

0.9

0.5

D

b

p

e

θ

E

A

1

A

L

p

detail X

L

(A  )

3

B

8

c

D

H

b

p

E

H

A

2

v

M

B

D

Z D

A

Z E

e

v

M

A

X

1

32

25

24

17

16

9

y

pin 1 index

w

M

w

M

0

2.5

5 mm

scale

LQFP32: plastic low profile quad flat package; 32 leads; body 7 x 7 x 1.4 mm

SOT358-1

background image

1999 Oct 28

31

Philips Semiconductors

Product specification

8-bit microcontrollers with DTMF generator

and 128 bytes EEPROM

PCA3351C; 52C; 53C;

PCD3351A; 52A; 53A

21 SOLDERING

21.1

Introduction

This text gives a very brief insight to a complex technology.

A more in-depth account of soldering ICs can be found in

our

“Data Handbook IC26; Integrated Circuit Packages”

(document order number 9398 652 90011).

There is no soldering method that is ideal for all IC

packages. Wave soldering is often preferred when

through-hole and surface mount components are mixed on

one printed-circuit board. However, wave soldering is not

always suitable for surface mount ICs, or for printed-circuit

boards with high population densities. In these situations

reflow soldering is often used.

21.2

Through-hole mount packages

21.2.1

S

OLDERING BY DIPPING OR BY SOLDER WAVE

The maximum permissible temperature of the solder is

260

°

C; solder at this temperature must not be in contact

with the joints for more than 5 seconds. The total contact

time of successive solder waves must not exceed

5 seconds.

The device may be mounted up to the seating plane, but

the temperature of the plastic body must not exceed the

specified maximum storage temperature (T

stg(max)

). If the

printed-circuit board has been pre-heated, forced cooling

may be necessary immediately after soldering to keep the

temperature within the permissible limit.

21.2.2

M

ANUAL SOLDERING

Apply the soldering iron (24 V or less) to the lead(s) of the

package, either below the seating plane or not more than

2 mm above it. If the temperature of the soldering iron bit

is less than 300

°

C it may remain in contact for up to

10 seconds. If the bit temperature is between

300 and 400

°

C, contact may be up to 5 seconds.

21.3

Surface mount packages

21.3.1

R

EFLOW SOLDERING

Reflow soldering requires solder paste (a suspension of

fine solder particles, flux and binding agent) to be applied

to the printed-circuit board by screen printing, stencilling or

pressure-syringe dispensing before package placement.

Several methods exist for reflowing; for example,

infrared/convection heating in a conveyor type oven.

Throughput times (preheating, soldering and cooling) vary

between 100 and 200 seconds depending on heating

method.

Typical reflow peak temperatures range from

215 to 250

°

C. The top-surface temperature of the

packages should preferable be kept below 230

°

C.

21.3.2

W

AVE SOLDERING

Conventional single wave soldering is not recommended

for surface mount devices (SMDs) or printed-circuit boards

with a high component density, as solder bridging and

non-wetting can present major problems.

To overcome these problems the double-wave soldering

method was specifically developed.

If wave soldering is used the following conditions must be

observed for optimal results:

Use a double-wave soldering method comprising a

turbulent wave with high upward pressure followed by a

smooth laminar wave.

For packages with leads on two sides and a pitch (e):

– larger than or equal to 1.27 mm, the footprint

longitudinal axis is preferred to be parallel to the

transport direction of the printed-circuit board;

– smaller than 1.27 mm, the footprint longitudinal axis

must be parallel to the transport direction of the

printed-circuit board.

The footprint must incorporate solder thieves at the

downstream end.

For packages with leads on four sides, the footprint must

be placed at a 45

°

angle to the transport direction of the

printed-circuit board. The footprint must incorporate

solder thieves downstream and at the side corners.

During placement and before soldering, the package must

be fixed with a droplet of adhesive. The adhesive can be

applied by screen printing, pin transfer or syringe

dispensing. The package can be soldered after the

adhesive is cured.

Typical dwell time is 4 seconds at 250

°

C.

A mildly-activated flux will eliminate the need for removal

of corrosive residues in most applications.

21.3.3

M

ANUAL SOLDERING

Fix the component by first soldering two

diagonally-opposite end leads. Use a low voltage (24 V or

less) soldering iron applied to the flat part of the lead.

Contact time must be limited to 10 seconds at up to

300

°

C.

When using a dedicated tool, all other leads can be

soldered in one operation within 2 to 5 seconds between

270 and 320

°

C.

background image

1999 Oct 28

32

Philips Semiconductors

Product specification

8-bit microcontrollers with DTMF generator

and 128 bytes EEPROM

PCA3351C; 52C; 53C;

PCD3351A; 52A; 53A

21.4

Suitability of IC packages for wave, reflow and dipping soldering methods

Notes

1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum

temperature (with respect to time) and body size of the package, there is a risk that internal or external package

cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the

Drypack information in the

“Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods”.

2. For SDIP packages, the longitudinal axis must be parallel to the transport direction of the printed-circuit board.

3. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink

(at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).

4. If wave soldering is considered, then the package must be placed at a 45

°

 angle to the solder wave direction.

The package footprint must incorporate solder thieves downstream and at the side corners.

5. Wave soldering is only suitable for LQFP, QFP and TQFP packages with a pitch (e) equal to or larger than 0.8 mm;

it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.

6. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is

definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.

22 DEFINITIONS

23 LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these

products can reasonably be expected to result in personal injury. Philips customers using or selling these products for

use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such

improper use or sale.

MOUNTING

PACKAGE

SOLDERING METHOD

WAVE

REFLOW

(1)

DIPPING

Through-hole mount DBS, DIP, HDIP, SDIP, SIL

suitable

(2)

suitable

Surface mount

BGA, LFBGA, SQFP, TFBGA

not suitable

suitable

HBCC, HLQFP, HSQFP, HSOP, HTQFP,

HTSSOP, SMS

not suitable

(3)

suitable

PLCC

(4)

, SO, SOJ

suitable

suitable

LQFP, QFP, TQFP

not recommended

(4)(5)

suitable

SSOP, TSSOP, VSO

not recommended

(6)

suitable

Data sheet status

Objective specification

This data sheet contains target or goal specifications for product development.

Preliminary specification

This data sheet contains preliminary data; supplementary data may be published later.

Product specification

This data sheet contains final product specifications.

Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or

more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation

of the device at these or at any other conditions above those given in the Characteristics sections of the specification

is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

background image

1999 Oct 28

33

Philips Semiconductors

Product specification

8-bit microcontrollers with DTMF generator

and 128 bytes EEPROM

PCA3351C; 52C; 53C;

PCD3351A; 52A; 53A

NOTES

background image

1999 Oct 28

34

Philips Semiconductors

Product specification

8-bit microcontrollers with DTMF generator

and 128 bytes EEPROM

PCA3351C; 52C; 53C;

PCD3351A; 52A; 53A

NOTES

background image

1999 Oct 28

35

Philips Semiconductors

Product specification

8-bit microcontrollers with DTMF generator

and 128 bytes EEPROM

PCA3351C; 52C; 53C;

PCD3351A; 52A; 53A

NOTES

background image

© Philips Electronics N.V.

SCA

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed

without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license

under patent- or other industrial or intellectual property rights.

Internet: http://www.semiconductors.philips.com

1999

68

Philips Semiconductors – a worldwide company

For all other countries apply to: Philips Semiconductors,

International Marketing & Sales Communications, Building BE-p, P.O. Box 218,

5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825

Argentina: see South America

Australia: 3 Figtree Drive, HOMEBUSH, NSW 2140,

Tel. +61 2 9704 8141, Fax. +61 2 9704 8139

Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,

Tel. +43 1 60 101 1248, Fax. +43 1 60 101 1210

Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,

220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773

Belgium: see The Netherlands

Brazil: see South America

Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,

51 James Bourchier Blvd., 1407 SOFIA,

Tel. +359 2 68 9211, Fax. +359 2 68 9102

Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,

Tel. +1 800 234 7381, Fax. +1 800 943 0087

China/Hong Kong: 501 Hong Kong Industrial Technology Centre,

72 Tat Chee Avenue, Kowloon Tong, HONG KONG,

Tel. +852 2319 7888, Fax. +852 2319 7700

Colombia: see South America

Czech Republic: see Austria

Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,

Tel. +45 33 29 3333, Fax. +45 33 29 3905

Finland: Sinikalliontie 3, FIN-02630 ESPOO,

Tel. +358 9 615 800, Fax. +358 9 6158 0920

France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,

Tel. +33 1 4099 6161, Fax. +33 1 4099 6427

Germany: Hammerbrookstraße 69, D-20097 HAMBURG,

Tel. +49 40 2353 60, Fax. +49 40 2353 6300

Hungary: see Austria

India: Philips INDIA Ltd, Band Box Building, 2nd floor,

254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,

Tel. +91 22 493 8541, Fax. +91 22 493 0966

Indonesia: PT Philips Development Corporation, Semiconductors Division,

Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510,

Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080

Ireland: Newstead, Clonskeagh, DUBLIN 14,

Tel. +353 1 7640 000, Fax. +353 1 7640 200

Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,

TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007

Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23 - 20052 MONZA (MI),

Tel. +39 039 203 6838, Fax +39 039 203 6800

Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,

TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5057

Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,

Tel. +82 2 709 1412, Fax. +82 2 709 1415

Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,

Tel. +60 3 750 5214, Fax. +60 3 757 4880

Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,

Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087

Middle East: see Italy

Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,

Tel. +31 40 27 82785, Fax. +31 40 27 88399

New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,

Tel. +64 9 849 4160, Fax. +64 9 849 7811

Norway: Box 1, Manglerud 0612, OSLO,

Tel. +47 22 74 8000, Fax. +47 22 74 8341

Pakistan: see Singapore

Philippines: Philips Semiconductors Philippines Inc.,

106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,

Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474

Poland: Al.Jerozolimskie 195 B, 02-222 WARSAW,

Tel. +48 22 5710 000, Fax. +48 22 5710 001

Portugal: see Spain

Romania: see Italy

Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,

Tel. +7 095 755 6918, Fax. +7 095 755 6919

Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,

Tel. +65 350 2538, Fax. +65 251 6500

Slovakia: see Austria

Slovenia: see Italy

South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,

2092 JOHANNESBURG, P.O. Box 58088 Newville 2114,

Tel. +27 11 471 5401, Fax. +27 11 471 5398

South America: Al. Vicente Pinzon, 173, 6th floor,

04547-130 SÃO PAULO, SP, Brazil,

Tel. +55 11 821 2333, Fax. +55 11 821 2382

Spain: Balmes 22, 08007 BARCELONA,

Tel. +34 93 301 6312, Fax. +34 93 301 4107

Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,

Tel. +46 8 5985 2000, Fax. +46 8 5985 2745

Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,

Tel. +41 1 488 2741 Fax. +41 1 488 3263

Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,

TAIPEI, Taiwan Tel. +886 2 2134 2886, Fax. +886 2 2134 2874

Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,

209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,

Tel. +66 2 745 4090, Fax. +66 2 398 0793

Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 28 81260 Umraniye,

ISTANBUL, Tel. +90 216 522 1500, Fax. +90 216 522 1813

Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,

252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461

United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,

MIDDLESEX UB3 5BX, Tel. +44 208 730 5000, Fax. +44 208 754 8421

United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,

Tel. +1 800 234 7381, Fax. +1 800 943 0087

Uruguay: see South America

Vietnam: see Singapore

Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,

Tel. +381 11 62 5344, Fax.+381 11 63 5777

Printed in The Netherlands

465002/07/pp

36

 Date of release:

1999 Oct 28

Document order number:

 9397 750 06528