background image

a

ADM206E/ADM207E/ADM208E/ADM211E/ADM213E

REV. C

Information furnished by Analog Devices is believed to be accurate and

reliable. However, no responsibility is assumed by Analog Devices for its

use, nor for any infringements of patents or other rights of third parties

which  may  result  from  its  use.  No  license  is  granted  by  implication  or

otherwise under any patent or patent rights of Analog Devices.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106,  U.S.A.

Tel: 781/329-4700

World Wide Web Site: www.analog.com

Fax: 781/326-8703

© Analog Devices, Inc., 2001

EMI-EMC-Compliant, 

؎15 kV ESD Protected,

RS-232 Line Drivers/Receivers

FUNCTIONAL BLOCK DIAGRAM

C1+

C1–

C2+

C2–

V

CC

0.1

F

   10V

0.1

F

   10V

V+

V–

+5V TO +10V

VOLTAGE

DOUBLER

14

12

13

5V INPUT

0.1

F

6.3V

+10V TO –10V

VOLTAGE

INVERTER

17

0.1

F

10V

T1

2

7

T1

OUT

T1

IN

11

0.1

F

3

6

T2

OUT

T2

IN

T3

1

20

T3

OUT

T3

IN

T4

28

21

T4

OUT

T4

IN

T2

8

9

R3

R4

R5

25

27

23

18

4

19

26

22

24

5

R1

R2

ADM211E

ADM213E

R1

OUT

R2

OUT

R3

OUT

R4

OUT

R5

OUT

R1

IN

R2

IN

R3

IN

R4

IN

R5

IN

SHDN (ADM211E)

SHDN (ADM213E)

EN (ADM211E)

EN (ADM213E)

CMOS

INPUTS*

CMOS

OUTPUTS

EIA/TIA-232

OUTPUTS

EIA/TIA-232

INPUTS**

GND

10

NOTES:

    * INTERNAL 400k

 PULL-UP RESISTOR ON EACH CMOS INPUT

** INTERNAL 5k

 PULL-DOWN RESISTOR ON EACH RS-232 INPUT

15

16

FEATURES

Complies with 89/336/EEC EMC Directive

ESD Protection to IEC1000-4-2 (801.2)

؎8 kV: Contact Discharge

؎15 kV: Air-Gap Discharge

؎15 kV: Human Body Model

Fast Transient Burst (EFT) Immunity (IEC1000-4-4)

Low EMI Emissions (EN55022)

Eliminates Costly TranZorbs*

230 kbits/s Data Rate Guaranteed

Single 5 V Power Supply

Shutdown Mode 1 

W

Plug-In Upgrade for MAX2xxE

Space Saving TSSOP Package Available

APPLICATIONS

Laptop Computers

Notebook Computers

Printers

Peripherals

Modems

GENERAL DESCRIPTION

The ADM2xxE is a family of robust RS-232 and V.28 interface

devices that operates from a single 5 V power supply. These prod-

ucts are suitable for operation in harsh electrical environments

and are compliant with the EU directive on EMC (89/336/EEC).

The level of emissions and immunity are both in compliance.

EM immunity includes ESD protection in excess of 

±15 kV on all

I-O lines (1000-4-2), Fast Transient Burst protection (1000-4-4)

and Radiated Immunity (1000-4-3). EM emissions include

radiated and conducted emissions as required by Information

Technology Equipment EN55022, CISPR22.

All devices fully conform to the EIA-232E and CCITT V.28

specifications and operate at data rates up to 230 kbps.

Shutdown and Enable control pins are provided on some of the

products. Please refer to Table I.

The shutdown function on the ADM211E disables the charge

pump and all transmitters and receivers. On the ADM213E the

charge pump, all transmitters, and three of the five receivers are

disabled. The remaining two receivers remain active, thereby

allowing monitoring of peripheral devices. This feature allows

the device to be shut down until a peripheral device begins

communication. The active receivers can alert the processor

which can then take the ADM213E out of the shutdown mode.

Operating from a single 5 V supply, four external 0.1 

µF capaci-

tors are required.

The ADM207E and ADM208E are available in 24-lead DIP,

SO, SSOP and TSSOP packages. The ADM211E and ADM213E

are available in 28-lead SO, SSOP and TSSOP packages.

All products are backward-compatible with earlier ADM2xx

products, facilitating easy upgrading of older designs.

Table I. Selection Table

Model

Supply Voltage

Drivers

Receivers

ESD Protection

Shutdown

Enable

Packages

ADM206E

5 V

4

3

±15 kV

Yes

Yes

R-24

ADM207E

5 V

5

3

±15 kV

No

No

N, R, RS, RU-24

ADM208E

5 V

4

4

±15 kV

No

No

N, R, RS, RU-24

ADM211E

5 V

4

5

±15 kV

Yes

Yes

R, RS, RU-28

ADM213E

5 V

4

5

±15 kV

Yes (

SD)*

Yes (EN)

R, RS, RU-28

*Two receivers active.

*TranZorb is a registered trademark of General Semiconductor Industries, Inc.

background image

REV. C

–2–

ADM206E/ADM207E/ADM208E/ADM211E/ADM213E–SPECIFICATIONS

(V

CC

 = 5.0 V 

؎ 10%, C1–C4 = 0.1 F. All specifications T

MIN

 to T

MAX

 unless otherwise noted.)

Parameter

Min

Typ

Max

Unit

Test Conditions/Comments

Operating Voltage Range

4.5

5.0

5.5

V

V

CC

 Power Supply Current

3.5

13

mA

No Load

Shutdown Supply Current

0.2

10

µA

Input Pull-Up Current

10

25

µA

T

IN

 = GND

Input Logic Threshold Low, V

INL

0.8

V

T

IN

,

 

EN, 

EN, SHDN, SHDN,

Input Logic Threshold High, V

INH

2.4

V

T

IN

Input Logic Threshold High, V

INH

2.4

V

EN, 

EN, SHDN, SHDN

CMOS Output Voltage Low, V

OL

0.4

V

I

OUT

 = 1.6 mA

CMOS Output Voltage High, V

OH

3.5

V

I

OUT

 = – 40

µA

CMOS Output Leakage Current

0.05

±10

µA

EN = V

CC

, EN = GND, 0 V 

≤ R

OUT

 

≤ V

CC

EIA-232 Input Voltage Range

1

–30

+30

V

EIA-232 Input Threshold Low

0.4

1.3

V

EIA-232 Input Threshold High

2.0

2.4

V

EIA-232 Input Hysteresis

0.25

V

EIA-232 Input Resistance

3

5

7

k

T

A

 = 0

°C to 85°C

Output Voltage Swing

±5.0

±9.0

V

All Transmitter Outputs

Loaded with 3 k

Ω to Ground

Transmitter Output Resistance

300

V

CC

 = 0 V, V

OUT

 = 

±2 V

RS-232 Output Short Circuit Current

±6

±20

±60

mA

Maximum Data Rate

230

kbps

R

L

 = 3 k

Ω to 7 kΩ, C

L

 = 50 pF to 2500 pF

 Receiver Propagation Delay

TPHL, TPLH

0.4

2

µs

C

L

 = 150 pF

Receiver Output Enable Time, t

ER

120

ns

Receiver Output Disable Time, t

DR

120

ns

Transmitter Propagation Delay

TPHL, TPLH

1

µs

R

L

 = 3 k

Ω, C

L

 = 2500 pF

Transition Region Slew Rate

8

V/

µs

R

L

 = 3 k

Ω, C

L

 = 50 pF to 2500 pF

Measured from +3 V to –3 V or

–3 V to +3 V

ESD Protection (I-O Pins)

±15

kV

Human Body Model

±15

kV

IEC1000-4-2 Air Discharge

±8

kV

IEC1000-4-2 Contact Discharge

EMI Immunity

10

V/m

IEC1000-4-3

NOTES

1

Guaranteed by design.

Specifications subject to change without notice.

background image

REV. C

–3–

ADM206E/ADM207E/ADM208E/ADM211E/ADM213E

ABSOLUTE MAXIMUM RATINGS

*

(T

A

 = 25

°C unless otherwise noted.)

V

CC

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  –0.3 V to +6 V

V+  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (V

CC 

–0.3 V) to +14 V

V–  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  +0.3 V to –14 V

Input Voltages

T

IN

 . . . . . . . . . . . . . . . . . . . . . . . . .  –0.3 V to (V+, +0.3 V)

R

IN

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

±30 V

Output Voltages

T

OUT

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

±15 V

R

OUT

 . . . . . . . . . . . . . . . . . . . . . . .  –0.3 V to (V

CC

 +0.3 V)

Short Circuit Duration

T

OUT

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Continuous

Power Dissipation

N-24 DIP (Derate 13.5 mW/

°C above 70°C) . . . .  1000 mW

R-24 SOIC (Derate 12 mW/

°C above 70°C)  . . . . .  900 mW

RS-24 SSOP (Derate 12 mW/

°C above 70°C)  . . . . .  850 mW

RU-24 TSSOP (Derate 12 mW/

°C above 70°C)  . . .  900 mW

R-28 SOIC (Derate 12 mW/

°C above 70°C)  . . . . . .  900 mW

RS-28 SSOP (Derate 10 mW/

°C above 70°C)  . . . . .  900 mW

RU-28 TSSOP (Derate 12 mW/

°C above 70°C)  . . .  900 mW

Operating Temperature Range

Industrial (A Version)  . . . . . . . . . . . . . . . . –40

°C to +85°C

Storage Temperature Range  . . . . . . . . . . . . –65

°C to +150°C

Lead Temperature (Soldering, 10 sec)  . . . . . . . . . . . .  300

°C

ESD Rating (MIL-STD-883B) (I-O Pins) . . . . . . . . .  

±15 kV

ESD Rating (IEC1000-4-2 Air) (I-O Pins)  . . . . . . . .  

±15 kV

ESD Rating (IEC1000-4-2 Contact) (I-O Pins)  . . . . .  

±8 kV

*This is a stress rating only and functional operation of the device at these or any

other conditions above those indicated in the operation sections of this specifica-

tion is not implied. Exposure to absolute maximum rating conditions for extended

periods of time may affect reliability.

Table II. ADM211E Truth Table

SHDN

EN

Status

T

OUT

1-4

R

OUT

1-5

0

0

Normal

Enabled

Enabled

Operation

0

1

Normal

Enabled

Disabled

Operation

1

X

Shutdown

Disabled

Disabled

X = Don’t Care.

Table III. ADM213E Truth Table

SHDN

EN

Status

T

OUT

1-4

R

OUT

1-3

R

OUT

4-5

0

0

Shutdown

Disabled

Disabled

Disabled

0

1

Shutdown

Disabled

Disabled

Enabled

1

0

Normal

Enabled

Disabled

Disabled

Operation

1

1

Normal

Enabled

Enabled

Enabled

Operation

ORDERING GUIDE

Temperature

Package

Package

Model

Range

Description

Option

ADM206EAR

–40

°C to +85°C

SOIC

R-24

ADM207EAN

–40

°C to +85°C

DIP

N-24

ADM207EAR

–40

°C to +85°C

SOIC

R-24

ADM207EARS

–40

°C to +85°C

SSOP

RS-24

ADM207EARU

–40

°C to +85°C

TSSOP

RU-24

ADM208EAN

–40

°C to +85°C

DIP

N-24

ADM208EAR

–40

°C to +85°C

SOIC

R-24

ADM208EARS

–40

°C to +85°C

SSOP

RS-24

ADM208EARU

–40

°C to +85°C

TSSOP

RU-24

ADM211EAR

–40

°C to +85°C

SOIC

R-28

ADM211EARS

–40

°C to +85°C

SSOP

RS-28

ADM211EARU

–40

°C to +85°C

TSSOP

RU-28

ADM213EAR

–40

°C to +85°C

SOIC

R-28

ADM213EARS

–40

°C to +85°C

SSOP

RS-28

ADM213EARU

–40

°C to +85°C

TSSOP

RU-28

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily

accumulate on the human body and test equipment and can discharge without detection. Although

the ADM206E/ADM207E/ADM208E/ADM211E/ADM213E features proprietary ESD protection

circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges.

Therefore, proper ESD precautions are recommended to avoid performance degradation or loss

of functionality.

WARNING!

ESD SENSITIVE DEVICE

background image

REV. C

ADM206E/ADM207E/ADM208E/ADM211E/ADM213E

–4–

13

16

15

14

24

23

22

21

20

19

18

17

TOP VIEW

(Not to Scale)

12

11

10

9

8

1

2

3

4

7

6

5

ADM207E

T3

OUT

T5

IN

R2

OUT

R2

IN

T4

OUT

T1

OUT

T2

OUT

R1

IN

T3

IN

T4

IN

T5

OUT

R1

OUT

T2

IN

T1

IN

GND

V

CC

C1+

V–

R3

IN

R3

OUT

V+

C1–

C2–

C2+

Figure 3. ADM207E Pin Configuration

CMOS

INPUTS*

CMOS

OUTPUTS

T1

IN

ADM207E

EIA/TIA-232

OUTPUTS

T1

OUT

GND

8

T2

IN

T3

IN

T4

IN

T2

OUT

T3

OUT

T4

OUT

EIA/TIA-232

INPUTS**

R1

IN

R2

IN

R3

IN

R1

OUT

R2

OUT

R3

OUT

  

*INTERNAL 400k

 PULL-UP RESISTOR ON EACH CMOS INPUT

**INTERNAL 5k

 PULL-DOWN RESISTOR ON EACH RS-232 INPUT

+5V TO +10V

VOLTAGE

DOUBLER

+10V TO –10V

VOLTAGE

INVERTER

0.1

F

6.3V

5V INPUT

V

CC

V+

V–

C1+

C1–

C2+

C2–

0.1

F

10V

0.1

F

10V

0.1

F

10V

0.1

F

14

13

12

10

15

11

9

3

1

2

24

T3

T4

T2

T1

19

6

7

18

16

4

23

R1

R2

R3

17

22

5

T5

IN

T5

OUT

20

T5

21

Figure 4. ADM207E Typical Operating Circuit

13

16

15

14

24

23

22

21

20

19

18

17

TOP VIEW

(Not to Scale)

12

11

10

9

8

1

2

3

4

7

6

5

ADM206E

T3

OUT

SD

R2

OUT

R2

IN

T4

OUT

T1

OUT

T2

OUT

R1

IN

T3

IN

T4

IN

EN

R1

OUT

T2

IN

T1

IN

GND

V

CC

C1+

V–

R3

IN

R3

OUT

V+

C1–

C2–

C2+

Figure 1. ADM206E DIP/SOIC/SSOP Pin Configuration

TTL/CMOS

INPUTS*

TTL/CMOS

OUTPUTS

T1

IN

ADM206E

SD

RS-232

OUTPUTS

T1

OUT

GND

T2

IN

T3

IN

T4

IN

T2

OUT

T3

OUT

T4

OUT

RS-232

INPUTS**

R1

IN

R2

IN

R3

IN

R1

OUT

R2

OUT

R3

OUT

  

*INTERNAL 400k

 PULL-UP RESISTOR ON EACH TTL/CMOS INPUT

**INTERNAL 5k

 PULL-DOWN RESISTOR ON EACH RS-232 INPUT

EN

+5V TO +10V

VOLTAGE

DOUBLER

+10V TO –10V

VOLTAGE

INVERTER

0.1

F

6.3V

5V INPUT

V

CC

V+

V–

C1+

C1–

C2+

C2–

0.1

F

6.3V

0.1

F

16V

0.1

F

16V

0.1

F

8

14

13

12

10

15

11

9

20

3

1

2

24

T3

T4

T2

T1

19

6

7

18

21

16

4

23

R1

R2

R3

17

22

5

Figure 2. ADM206E Typical Operating Circuit

background image

REV. C

ADM206E/ADM207E/ADM208E/ADM211E/ADM213E

–5–

13

16

15

14

24

23

22

21

20

19

18

17

TOP VIEW

(Not to Scale)

12

11

10

9

8

1

2

3

4

7

6

5

ADM208E

T2

OUT

T4

IN

R3

OUT

R3

IN

T3

OUT

T1

OUT

R2

IN

R2

OUT

T2

IN

T3

IN

T4

OUT

T1

IN

R1

OUT

R1

IN

GND

V

CC

C1+

V–

R4

IN

R4

OUT

V+

C1–

C2–

C2+

Figure 5. ADM208E Pin Configuration

CMOS

INPUTS*

CMOS

OUTPUTS

T1

IN

ADM208E

EIA/TIA-232

OUTPUTS

T1

OUT

GND

8

T2

IN

T3

IN

T4

IN

T2

OUT

T3

OUT

T4

OUT

EIA/TIA-232

INPUTS**

R1

IN

R2

IN

R3

IN

R1

OUT

R2

OUT

R3

OUT

  

*INTERNAL 400k

 PULL-UP RESISTOR ON EACH CMOS INPUT

**INTERNAL 5k

 PULL-DOWN RESISTOR ON EACH RS-232 INPUT

+5V TO +10V

VOLTAGE

DOUBLER

+10V TO –10V

VOLTAGE

INVERTER

0.1

F

6.3V

5V INPUT

V

CC

V+

V–

C1+

C1–

C2+

C2–

0.1

F

10V

0.1

F

10V

0.1

F

10V

0.1

F

14

13

12

10

15

11

9

20

1

2

24

T3

T4

T2

T1

21

18

5

19

23

7

3

R1

R2

R3

4

22

6

R4

IN

R4

OUT

16

R4

17

Figure 6. ADM208E Typical Operating Circuit

14

13

12

11

10

9

8

1

2

3

4

7

6

5

17

16

15

20

19

18

28

27

26

25

24

23

22

21

TOP VIEW

(Not to Scale)

ADM211E

T3

OUT

R3

OUT

R3

IN

T4

OUT

T1

OUT

T2

OUT

R2

IN

R4

OUT

R4

IN

R2

OUT

T2

IN

T1

IN

R1

OUT

R1

IN

GND

R5

OUT

T3

IN

T4

IN

V

CC

C1+

V+

C1–

R5

IN

C2+

C2–

V–

SHDN

EN

Figure 7. ADM211E Pin Configuration

CMOS

INPUTS*

TTL/CMOS

OUTPUTS

T1

IN

ADM211E

SHDN

EIA/TIA-232

OUTPUTS

T1

OUT

GND

T2

IN

T3

IN

T4

IN

T2

OUT

T3

OUT

T4

OUT

EIA/TIA-232

INPUTS**

R1

IN

R2

IN

R3

IN

R1

OUT

R2

OUT

R3

OUT

  

*INTERNAL 400k

 PULL-UP RESISTOR ON EACH CMOS INPUT

**INTERNAL 5k

 PULL-DOWN RESISTOR ON EACH RS-232 INPUT

EN

+5V TO +10V

VOLTAGE

DOUBLER

+10V TO –10V

VOLTAGE

INVERTER

14

12

11

0.1

F

6.3V

5V INPUT

V

CC

V+

V–

C1+

C1–

C2+

C2–

0.1

F

10V

0.1

F

10V

0.1

F

10V

13

0.1

F

10

15

17

3

1

2

28

T3

T4

T2

T1

21

6

7

20

25

27

9

4

R1

R2

R3

5

8

16

R4

IN

R5

IN

R4

OUT

R5

OUT

18

23

R4

R5

19

26

24

22

Figure 8. ADM211E Typical Operating Circuit

background image

REV. C

ADM206E/ADM207E/ADM208E/ADM211E/ADM213E

–6–

14

13

12

11

10

9

8

1

2

3

4

7

6

5

17

16

15

20

19

18

28

27

26

25

24

23

22

21

TOP VIEW

(Not to Scale)

ADM213E

T3

OUT

R3

OUT

R3

IN

T4

OUT

T1

OUT

T2

OUT

R2

IN

R4

OUT

*

R4

IN

*

R2

OUT

T2

IN

T1

IN

R1

OUT

R1

IN

GND

R5

OUT

*

T3

IN

T4

IN

V

CC

C1+

V+

C1–

R5

IN

*

C2+

C2–

V–

EN

*ACTIVE IN SHUTDOWN

SHDN

Figure 9. ADM213E Pin Configuration

PIN FUNCTION DESCRIPTIONS

Mnemonic

Function

V

CC

Power Supply Input: 5 V 

± 10%.

V+

Internally Generated Positive Supply (+9 V nominal).

V–

Internally Generated Negative Supply (–9 V nominal).

GND

Ground Pin. Must Be Connected to 0 V.

C1+, C1–

External Capacitor 1 is connected between these pins. 0.1 

µF capacitor is recommended but larger capacitors up

to 47 

µF may be used.

C2+, C2–

External Capacitor 2 is connected between these pins. 0.1 

µF capacitor is recommended but larger capacitors up

to 47 

µF may be used.

T

IN

Transmitter (Driver) Inputs. These inputs accept TTL/CMOS levels. An internal 400 k

Ω pull-up resistor to V

CC

is connected on each input.

T

OUT

Transmitter (Driver) Outputs. These are RS-232 signal levels (Typically 

±9 V).

R

IN

Receiver Inputs. These inputs accept RS-232 signal levels. An internal 5 k

Ω pull-down resistor to GND is

connected on each input.

R

OUT

Receiver Outputs. These are CMOS output logic levels.

EN/

EN

Receiver Enable (Active High on ADM213E, Active Low on ADM211E); This input is used to enable/disable the

receiver outputs. With 

EN = Low ADM211E (EN = High ADM213E), the receiver outputs are enabled. With EN

= High (EN = Low ADM213E), the receiver outputs are placed in a high impedance state.

SHDN/SHDN

Shutdown Control (Active Low on ADM213E, Active High on ADM211E); Refer to Table II. In shutdown the

charge pump is disabled, the transmitter outputs are turned off and all receiver outputs (ADM211E), receivers R1,

R2, R3 (ADM213E) are placed in a high impedance state. Receivers R4 and R5 on the ADM213E continue to

operate normally during shutdown. Power consumption in shutdown for all parts reduces to 5 

µW.

TTL/CMOS

INPUTS

1

TTL/CMOS

OUTPUTS

R5

OUT

3

T1

IN

ADM213E

SHDN

RS-232

OUTPUTS

T1

OUT

GND

T2

IN

T3

IN

T4

IN

T2

OUT

T3

OUT

T4

OUT

RS-232

INPUTS

2

R1

IN

R2

IN

R3

IN

R1

OUT

R2

OUT

R3

OUT

NOTES

1

INTERNAL 400k

 PULL-UP RESISTOR ON EACH CMOS INPUT

2

INTERNAL 5k

 PULL-DOWN RESISTOR ON EACH RS-232 INPUT

3

ACTIVE IN SHUTDOWN

EN

+5V TO +10V

VOLTAGE

DOUBLER

+10V TO –10V

VOLTAGE

INVERTER

14

12

11

0.1

F

6.3V

5V INPUT

V

CC

V+

V–

C1+

C1–

C2+

C2–

0.1

F

16V

0.1

F

16V

0.1

F

16V

13

0.1

F

10

15

17

3

1

2

28

T3

T4

T2

T1

21

6

7

20

25

27

9

4

R1

R2

R3

5

8

16

R4

IN

3

R5

IN

3

R4

OUT

3

18

23

R4

R5

19

26

24

22

Figure 10. ADM213E Typical Operating Circuit

background image

REV. C

–7–

ADM206E/ADM207E/ADM208E/ADM211E/ADM213E

Typical Performance Characteristics

         

LOG FREQUENCY – MHz

80

70

0

0.3

30

0.6

1

60

50

10

40

30

20

3

6

18

LIMIT

dB

V

TPC 1. EMC Conducted Emissions

         

LOAD CAPACITANCE – pF

–3

500

2500

1000

2000

7

5

3

1

–1

–5

–7

0

1500

3000

9

Tx O/P 

 V

Tx  O/P HI

Tx  O/P LO

TPC 2. Transmitter Output Voltage High/Low vs.

Load Capacitance @ 230 kbps

 

2

4

6

8

10

Tx O/P HI

15

10

5

0

–15

LOAD CURRENT – mA

Tx O/P 

 V

0

–10

–5

Tx O/P LO

TPC 3. Transmitter Output Voltage vs. Load Current

      

START 30.0 MHz

STOP 200.0 MHz

LIMIT

dB

V

80

70

60

50

40

30

20

10

0

TPC 4. EMC Radiated Emissions

       

V

CC

 – V

–1

5.5

6.0

4.0

4.5

5.0

9

7

5

3

1

–3

–5

–7

–9

Tx O/P 

 V

Tx O/P HI LOADED

Tx O/P LO LOADED

TPC 5. Transmitter Output Voltage vs. V

CC

        

SD

V+

V–

1

CH 3

CH 2

CH 1

CH 1

5.00V

5.00V

M 50.0µs

3.1V

5.00V

V+, V– EXITING SD

T

T

T

2

3

TPC 6. Charge Pump V+, V– Exiting Shutdown

background image

REV. C

ADM206E/ADM207E/ADM208E/ADM211E/ADM213E

–8–

         

V

CC

 – V

350

0

4.5

4.7

IMPEDANCE 

 

4.9

5.1

5.3

5.5

300

250

200

150

100

50

V–

V+

TPC 7. Charge Pump Impedance vs. V

CC

 

LOAD CURRENT– mA

15

5

10

15

20

10

5

–5

–10

–15

0

V+/V

 –

 V

0

V+

V–

TPC 8. Charge Pump V+, V– vs. Current

background image

REV. C

ADM206E/ADM207E/ADM208E/ADM211E/ADM213E

–9–

GENERAL DESCRIPTION

The ADM206E/ADM207E/ADM208E/ADM211E/ADM213E

are ruggedized RS-232 line drivers/receivers which operate from

a single 5 V supply. Step-up voltage converters coupled with level

shifting transmitters and receivers allow RS-232 levels to be devel-

oped while operating from a single 5 V supply.

Features include low power consumption, high transmission rates

and compatibility with the EU directive on electromagnetic

compatibility. EM compatibility includes protection against radi-

ated and conducted interference including high levels of

electrostatic discharge.

All RS-232 inputs and outputs contain protection against electro-

static discharges up to 

±15 kV and electrical fast transients up to

±2 kV. This ensures compliance to IE1000-4-2 and IEC1000-4-4

requirements.

The devices are ideally suited for operation in electrically

harsh environments or where RS-232 cables are frequently being

plugged/ unplugged. They are also immune to high RF field

strengths without special shielding precautions.

Emissions are also controlled to within very strict limits. CMOS

technology is used to keep the power dissipation to an absolute

minimum allowing maximum battery life in portable applications.

The ADMxxE is a modification, enhancement and improve-

ment to the AD230–AD241 family and derivatives thereof. It

is essentially plug-in compatible and does not have materially

different applications.

CIRCUIT DESCRIPTION

The internal circuitry consists of four main sections. These are:

1. A charge pump voltage converter.

2. 5 V logic to EIA-232 transmitters.

3. EIA-232 to 5 V logic receivers.

4. Transient protection circuit on all I-O lines.

Charge Pump DC-DC Voltage Converter

The charge pump voltage converter consists of an 200 kHz

oscillator and a switching matrix. The converter generates a

± 10 V supply from the input 5 V level. This is done in two

stages using a switched capacitor technique as illustrated below.

First, the 5 V input supply is doubled to 10 V using capacitor

C1 as the charge storage element. The 10 V level is then inverted

to generate –10 V using C2 as the storage element.

Capacitors C3 and C4 are used to reduce the output ripple. If

desired, larger capacitors (up to 47 

µF) can be used for capaci-

tors C1–C4. This facilitates direct substitution with older

generation charge pump RS-232 transceivers.

The V+ and V– supplies may also be used to power external

circuitry if the current requirements are small. Please refer to

TPC 9 in the Typical Performance Characteristics section.

S1

S2

C1

S4

S3

C3

V+ = 2V

CC

V

CC

V

CC

INTERNAL

OSCILLATOR

GND

Figure 11. Charge Pump Voltage Doubler

S1

S2

C2

S4

S3

C4

V– = –(V+)

V+

GND

INTERNAL

OSCILLATOR

GND

FROM

VOLTAGE

DOUBLER

Figure 12. Charge Pump Voltage Inverter

Transmitter (Driver) Section

The drivers convert 5 V logic input levels into EIA-232 output

levels. With V

CC

 = 5 V and driving an EIA-232 load, the output

voltage swing is typically 

±9 V.

Unused inputs may be left unconnected, as an internal 400 k

pull-up resistor pulls them high forcing the outputs into a low

state. The input pull-up resistors typically source 8 

µA when

grounded, so unused inputs should either be connected to V

CC

or left unconnected in order to minimize power consumption.

Receiver Section

The receivers are inverting level shifters which accept EIA-232

input levels and translate them into 5 V logic output levels.

The inputs have internal 5 k

Ω pull-down resistors to ground

and are also protected against overvoltages of up to 

± 25 V.

The guaranteed switching thresholds are 0.4 V minimum and

2.4 V maximum. Unconnected inputs are pulled to 0 V by the

internal 5 k

Ω pull-down resistor. This, therefore, results in

a Logic 1 output level for unconnected inputs or for inputs

connected to GND.

The receivers have Schmitt trigger input with a hysteresis level

of 0.5 V. This ensures error-free reception for both noisy inputs

and for inputs with slow transition times.

ENABLE AND SHUTDOWN

Table II and Table III show the truth tables for the enable and

shutdown control signals. The enable function is intended to

facilitate data bus connections where it is desirable to three state

the receiver outputs. In the disabled mode, all receiver outputs

are placed in a high impedance state. The shutdown function is

intended to shut the device down, thereby minimizing the quies-

cent current. In shutdown, all transmitters are disabled and all

receivers on the ADM211E are three-stated. On the ADM213E,

receivers R4 and R5 remain enabled in shutdown. Note that the

transmitters are disabled but are not three-stated in shutdown,

so it is not permitted to connect multiple (RS-232) driver out-

puts together.

The shutdown feature is very useful in battery operated systems

since it reduces the power consumption to 1 

µW. During shut-

down the charge pump is also disabled. The shutdown control

input is active high on the ADM211E, and it is active low on

the ADM213E. When exiting shutdown, the charge pump is

restarted and it takes approximately 100 

µs for it to reach its

steady state operating conditions.

background image

REV. C

ADM206E/ADM207E/ADM208E/ADM211E/ADM213E

–10–

High Baud Rate

The ADM2xxE feature high slew rates permitting data transmis-

sion at rates well in excess of the EIA-232-E specifications.

RS-232 levels are maintained at data rates up to 230 kb/s even

under worst case loading conditions. This allows for high-speed

data links between two terminals, or indeed it is suitable for the

new generation modem standards which require data rates of

200 kb/s. The slew rate is internally controlled to less than 30 V/

µs

in order to minimize EMI interference.

 t

DR

3V

0V

EN INPUT

VOH

VOL

RECEIVER

 OUTPUT

VOH –0.1V

VOL +0.1V

NOTE:

EN IS THE COMPLEMENT OF 

EN FOR THE ADM213E

Figure 13. Receiver-Disable Timing

 t

ER

3V

0V

EN INPUT

RECEIVER

 OUTPUT

+3.5V

+0.8V

NOTE:

EN IS THE COMPLEMENT OF 

EN FOR THE ADM213E

Figure 14. Receiver Enable Timing

ESD/EFT Transient Protection Scheme

The ADM2xxE uses protective clamping structures on all

inputs and outputs that clamp the voltage to a safe level and dissi-

pates the energy present in ESD (Electrostatic) and EFT

(Electrical Fast Transients) discharges. A simplified schematic

of the protection structure is shown in Figures 15a and 15b.

Each input and output contains two back-to-back high-speed

clamping diodes. During normal operation, with maximum

RS-232 signal levels, the diodes have no effect as one or the

other is reverse-biased, depending on the polarity of the signal.

If, however, the voltage exceeds about 

±50 V, reverse breakdown

occurs and the voltage is clamped at this level. The diodes are

large p-n junctions designed to handle the instantaneous cur-

rent surge which can exceed several amperes.

The transmitter outputs and receiver inputs have a similar pro-

tection structure. The receiver inputs can also dissipate some of

the energy through the internal 5 k

Ω resistor to GND as well as

through the protection diodes.

The protection structure achieves ESD protection up to 

±15 kV

and EFT protection up to 

±2 kV on all RS-232 I-O lines. The

methods used to test the protection scheme are discussed later.

R

IN

RX

D1

D2

RECEIVER

INPUT

R1

Figure 15a. Receiver Input Protection Scheme

RX

D1

D2

TRANSMITTER

OUTPUT

T

OUT

Figure 15b. Transmitter Output Protection Scheme

ESD TESTING (IEC1000-4-2)

IEC1000-4-2 (previously 801-2) specifies compliance testing

using two coupling methods, contact discharge, and air-gap

discharge. Contact discharge calls for a direct connection to the

unit being tested. Air-gap discharge uses a higher test voltage

but does not make direct contact with the unit under test. With

air discharge, the discharge gun is moved toward the unit under

test, developing an arc across the air gap; hence the term air-

discharge. This method is influenced by humidity, temperature,

barometric pressure, distance, and rate of closure of the discharge

gun. The contact-discharge method, while less realistic, is more

repeatable, and is gaining acceptance in preference to the air-

gap method.

Although very little energy is contained within an ESD pulse,

the extremely fast rise-time, coupled with high voltages, can

cause failures in unprotected semiconductors. Catastrophic

destruction can occur immediately as a result of arcing or heat-

ing. Even if catastrophic failure does not occur immediately, the

device may suffer from parametric degradation which may result in

degraded performance. The cumulative effects of continuous

exposure can eventually lead to complete failure.

I-O lines are particularly vulnerable to ESD damage. Simply

touching or plugging in an I-O cable can result in a static

discharge that can damage or completely destroy the interface

product connected to the I-O port. Traditional ESD test meth-

ods such as the MIL-STD-883B method 3015.7 do not fully

test a product’s susceptibility to this type of discharge. This test

was intended to test a product’s susceptibility to ESD damage

during handling. Each pin is tested with respect to all other

pins. There are some important differences between the tradi-

tional test and the IEC test:

(a) The IEC test is much more stringent in terms of discharge

(

energy. The peak current injected is over four times greater.

(b) The current rise-time is significantly faster in the IEC test.

(c) The IEC test is carried out while power is applied to the device.

It is possible that the ESD discharge could induce latch-up in

the device under test. This test, therefore, is more representative

of a real-world I-O discharge where the equipment is operating

normally with power applied. For maximum peace of mind, how-

ever, both tests should be performed, thus ensuring maximum

protection both during handling and later, during field service.

background image

REV. C

ADM206E/ADM207E/ADM208E/ADM211E/ADM213E

–11–

R1

R2

C1

DEVICE

UNDER TEST

HIGH

VOLTAGE

GENERATOR

ESD TEST METHOD

R2

C1

H. BODY MIL-STD883B

1.5k

100pF

IEC1000-4-2

330

150pF

Figure 16. ESD Test Standards

100

I

PEAK

  

 %

90

36.8

10

  t

DL

t

RL

TIME t

Figure 17. Human Body Model ESD Current Waveform

100

I

PEAK

  

 %

90

10

TIME t

  30ns

  60ns

  0.1 TO 1ns

Figure 18. IEC1000-4-2 ESD Current Waveform

The ADM2xxE family of products are tested using both of the

above-mentioned test methods. All pins are tested with respect

to all other pins as per the MIL-STD-883B specification. In

addition, all I-O pins are tested as per the IEC test specification.

The products were tested under the following conditions:

(a) Power-On—Normal Operation

(b) Power-On—Shutdown Mode

(c) Power-Off

There are four levels of compliance defined by IEC1000-4-2.

The ADM2xxE family of products meet the most stringent

compliance level for both contact and for air-gap discharge. This

means that the products are able to withstand contact discharges

in excess of 8 kV and air-gap discharges in excess of 15 kV.

Table IV. IEC1000-4-2 Compliance Levels

Contact Discharge

Air Discharge

Level

(kV)

(kV)

1

2

2

2

4

4

3

6

8

4

8

15

Table V. ADM2xxE ESD Test Results

ESD Test Method

I-O Pin (kV)

MIL-STD-883B

±15

IEC1000-4-2

Contact

±8

Air

±15

FAST TRANSIENT BURST TESTING (IEC1000-4-4)

IEC1000-4-4 (previously 801-4) covers electrical fast-transient/

burst (EFT) immunity. Electrical fast transients occur as a

result of arcing contacts in switches and relays. The tests simu-

late the interference generated when for example a power relay

disconnects an inductive load. A spark is generated due to the

well known back EMF effect. In fact, the spark consists of a burst

of sparks as the relay contacts separate. The voltage appear-

ing on the line, therefore, consists of a burst of extremely fast

transient impulses. A similar effect occurs when switching on

fluorescent lights.

The fast transient burst test defined in IEC1000-4-4 simulates

this arcing, and its waveform is illustrated in Figure 19. It consists

of a burst of 2.5 kHz to 5 kHz transients repeating at 300 ms

intervals. It is specified for both power and data lines.

  300ms

  15ms

t

V

5ns

  0.2/0.4ms

50ns

V

t

Figure 19. IEC1000-4-4 Fast Transient Waveform

background image

REV. C

ADM206E/ADM207E/ADM208E/ADM211E/ADM213E

–12–

Table VI.

V Peak (kV)

V Peak (kV)

Level

PSU

I-O

1

0.5

0.25

2

1

0.5

3

2

1

4

4

2

A simplified circuit diagram of the actual EFT generator is

illustrated in Figure 20.

The transients are coupled onto the signal lines using an EFT

coupling clamp. The clamp is 1 m long and it completely sur-

rounds the cable providing maximum coupling capacitance

(50 pF to 200 pF typ) between the clamp and the cable. High

energy transients are capacitively coupled onto the signal lines.

Fast rise times (5 ns) as specified by the standard result in very

effective coupling. This test is very severe since high voltages are

coupled onto the signal lines. The repetitive transients can often

cause problems where single pulses do not. Destructive latch-up

may be induced due to the high energy content of the transients.

Note that this stress is applied while the interface products are

powered up and are transmitting data. The EFT test applies

hundreds of pulses with higher energy than ESD. Worst-case

transient current on an I-O line can be as high as 40A.

Test results are classified according to the following:

1. Normal performance within specification limits.

2. Temporary degradation or loss of performance which is self-

recoverable.

3. Temporary degradation or loss of function or performance

which requires operator intervention or system reset.

4. Degradation or loss of function which is not recoverable due

to damage.

The ADM2xxE have been tested under worst-case conditions

using unshielded cables, and meet Classification 2. Data trans-

mission during the transient condition is corrupted, but it may

be resumed immediately following the EFT event without user

intervention.

R

C

R

M

C

C

HIGH

VOLTAGE

SOURCE

L

Z

S

C

D

50

OUTPUT

Figure 20. IEC1000-4-4 Fast Transient Generator

IEC1000-4-3 RADIATED IMMUNITY

IEC1000-4-3 (previously IEC801-3) describes the measure-

ment method and defines the levels of immunity to radiated

electromagnetic fields. It was originally intended to simulate the

electromagnetic fields generated by portable radio transceivers

or any other device that generates continuous wave radiated

electromagnetic energy. Its scope has since been broadened to

include spurious EM energy which can be radiated from fluores-

cent lights, thyristor drives, inductive loads, etc.

Testing for immunity involves irradiating the device with an EM

field. There are various methods of achieving this, including use

of anechoic chamber, stripline cell, TEM cell, GTEM cell. A

stripline cell consists of two parallel plates with an electric field

developed between them. The device under test is placed within

the cell and exposed to the electric field. There are three severity

levels having field strengths ranging from 1 V to 10 V/m. Results

are classified in a similar fashion to those for IEC1000-4-4.

1. Normal operation.

2. Temporary degradation or loss of function which is self-

recoverable when the interfering signal is removed.

3. Temporary degradation or loss of function which requires

operator intervention or system reset when the interfering

signal is removed.

4. Degradation or loss of function which is not recoverable due

to damage.

The ADM2xxE family of products easily meets Classification 1

at the most stringent (Level 3) requirement. In fact, field strengths

up to 30 V/m showed no performance degradation, and error-

free data transmission continued even during irradiation.

Table VII. Test Severity Levels (IEC1000-4-3)

Field Strength

Level

V/m

1

1

2

3

3

10

EMISSIONS/INTERFERENCE

EN55 022, CISPR22 defines the permitted limits of radiated

and conducted interference from Information Technology (IT)

equipment. The objective of the standard is to minimize the

level of emissions both conducted and radiated.

For ease of measurement and analysis, conducted emissions are

assumed to predominate below 30 MHz and radiated emissions

are assumed to predominate above 30 MHz.

CONDUCTED EMISSIONS

This is a measure of noise that is conducted onto the line

power supply. Switching transients from the charge pump which

are 20 V in magnitude and containing significant energy can

lead to conducted emissions. Other sources of conducted emis-

sions can be due to overlap in switch on-times in the charge

pump voltage converter. In the voltage doubler shown below, if

S2 has not fully turned off before S4 turns on, this results in a

transient current glitch between V

CC

 and GND which results in

conducted emissions. It is therefore important that the switches

in the charge pump guarantee break-before-make switching

under all conditions so that instantaneous short circuit condi-

tions do not occur.

The ADM2xxE has been designed to minimize the switching

transients and ensure break-before-make switching thereby

minimizing conducted emissions. This has resulted in the

level of emissions being well below the limits required by the

specification. No additional filtering/decoupling other than the

recommended 0.1 

µF capacitor is required.

background image

REV. C

ADM206E/ADM207E/ADM208E/ADM211E/ADM213E

–13–

Conducted emissions are measured by monitoring the line

power supply. The equipment used consists of a LISN (Line

Impedance Stabilizing Network) which essentially presents a

fixed impedance at RF, and a spectrum analyzer. The spectrum

analyzer scans for emissions up to 30 MHz and a plot for the

ADM211E is shown in Figure 23.

S1

S2

C1

S4

S3

C3

V+ = 2V

CC

V

CC

INTERNAL

OSCILLATOR

GND

V

CC

Figure 21. Charge Pump Voltage Doubler

ø

1

ø

2

SWITCHING GLITCHES

Figure 22. Switching Glitches

LOG FREQUENCY – MHz

80

70

0

0.3

30

0.6

1

60

50

10

40

30

20

3

6

18

LIMIT

dB

V

Figure 23. Conducted Emissions Plot

RADIATED EMISSIONS

Radiated emissions are measured at frequencies in excess of

30 MHz. RS-232 outputs designed for operation at high baud

rates while driving cables can radiate high frequency EM energy.

The reasons already discussed which cause conducted emissions

can also be responsible for radiated emissions. Fast RS-232

output transitions can radiate interference, especially when

lightly loaded and driving unshielded cables. Charge pump

devices are also prone to radiating noise due to the high fre-

quency oscillator and high voltages being switched by the charge

pump. The move towards smaller capacitors in order to con-

serve board space has resulted in higher frequency oscillators

being employed in the charge pump design. This has resulted in

higher levels of emission, both conducted and radiated.

The RS-232 outputs on the ADM2xxE products feature a con-

trolled slew rate in order to minimize the level of radiated

emissions, yet are fast enough to support data rates up to

230 kBaud.

DUT

TURNTABLE

RADIATED NOISE

ADJUSTABLE

ANTENNA

TO

RECEIVER

Figure 24. Radiated Emissions Test Setup

Figure 25 shows a plot of radiated emissions vs. frequency. This

shows that the levels of emissions are well within specifications

without the need for any additional shielding or filtering compo-

nents. The ADM2xxE was operated at maximum baud rates

and configured as in a typical RS-232 interface.

Testing for radiated emissions was carried out in a shielded

anechoic chamber.

START 30.0 MHz

STOP 200.0 MHz

LIMIT

dB

V

80

70

60

50

40

30

20

10

0

Figure 25. Radiated Emissions Plot

background image

REV. C

ADM206E/ADM207E/ADM208E/ADM211E/ADM213E

–14–

24-Lead DIP (N-24)

24

1

12

13

PIN 1

1.275 (32.30)

1.125 (28.60)

0.280 (7.11)

0.240 (6.10)

0.195 (4.95)

0.115 (2.93)

0.015 (0.381)

0.008 (0.204)

0.325 (8.25)

0.300 (7.62)

SEATING

PLANE

0.060 (1.52)

0.015 (0.38)

0.210

(5.33)

MAX

0.022 (0.558)

0.014 (0.356)

0.200 (5.05)

0.125 (3.18)

0.150

(3.81)

MIN

0.100

(2.54)

BSC

0.070 (1.77)

0.045 (1.15)

28-Lead SOIC (R-28)

0.0125 (0.32)

0.0091 (0.23)

8

؇

0

؇

0.0291 (0.74)

0.0098 (0.25)

؋ 45؇

0.0500 (1.27)

0.0157 (0.40)

SEATING

PLANE

0.0118 (0.30)

0.0040 (0.10)

0.0192 (0.49)

0.0138 (0.35)

0.1043 (2.65)

0.0926 (2.35)

0.0500

(1.27)

BSC

28

15

14

1

0.7125 (18.10)

0.6969 (17.70)

0.4193 (10.65)

0.3937 (10.00)

0.2992 (7.60)

0.2914 (7.40)

PIN 1

24-Lead SOIC (R-24)

0.0125 (0.32)

0.0091 (0.23)

8

؇

0

؇

0.0291 (0.74)

0.0098 (0.25)

؋ 45؇

0.0500 (1.27)

0.0157 (0.40)

SEATING

PLANE

0.0118 (0.30)

0.0040 (0.10)

0.0192 (0.49)

0.0138 (0.35)

0.1043 (2.65)

0.0926 (2.35)

0.0500

(1.27)

BSC

24

13

12

1

0.4193 (10.65)

0.3937 (10.00)

0.2992 (7.60)

0.2914 (7.40)

PIN 1

0.6141 (15.60)

0.5985 (15.20)

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

background image

REV. C

ADM206E/ADM207E/ADM208E/ADM211E/ADM213E

–15–

24-Lead SSOP (RS-24)

24

13

12

1

0.311 (7.9)

0.301 (7.64)

0.328 (8.33)

0.318 (8.08)

0.212 (5.38)

0.205 (5.21)

PIN 1

0.015 (0.38)

0.010 (0.25)

SEATING

PLANE

0.008 (0.203)

0.002 (0.050)

0.0256

(0.65)

BSC

0.078 (1.98)

0.068 (1.73)

0.07 (1.78)

0.066 (1.67)

0.037 (0.94)

0.022 (0.559)

0.009 (0.229)

0.005 (0.127)

8

؇

0

؇

28-Lead SSOP (RS-28)

0.009 (0.229)

0.005 (0.127)

0.03 (0.762)

0.022 (0.558)

8

؇

0

؇

0.008 (0.203)

0.002 (0.050)

0.07 (1.79)

0.066 (1.67)

0.078 (1.98)

0.068 (1.73)

0.015 (0.38)

0.010 (0.25)

SEATING

PLANE

0.0256

(0.65)

BSC

0.311 (7.9)

0.301 (7.64)

0.212 (5.38)

0.205 (5.21)

28

15

14

1

0.407 (10.34)

0.397 (10.08)

PIN 1

24-Lead TSSOP (RU-24)

24

13

12

1

0.256 (6.50)

0.246 (6.25)

0.177 (4.50)

0.169 (4.30)

PIN 1

0.311 (7.90)

0.303 (7.70)

SEATING

PLANE

0.006 (0.15)

0.002 (0.05)

0.0118 (0.30)

0.0075 (0.19)

0.0256 (0.65)

BSC

0.0433 (1.10)

MAX

0.0079 (0.20)

0.0035 (0.090)

0.028 (0.70)

0.020 (0.50)

8

؇

0

؇

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

background image

REV. C

–16–

C00068–0–3/01(C)

PRINTED IN U.S.A.

ADM206E/ADM207E/ADM208E/ADM211E/ADM213E

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

Location

Page

Changed from REV. B to REV C.

Features

Change 460 kbits/s to 230 kbits/s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Specifications Table

Changed in Min, Typ, Max, Test Conditions/Comments columns  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Absolute Maximum Ratings

Deleted some items  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Figures

Change made in Figure 6  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Typical Performance Characteristics

Changes made in plots  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7, 8

Table V.

Column removed  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Revision History

28-Lead TSSOP (RU-28)

0.177 (4.50)

0.169 (4.30)

28

15

14

1

0.386 (9.80)

0.378 (9.60)

0.256 (6.50)

0.246 (6.25)

PIN 1

SEATING

PLANE

0.006 (0.15)

0.002 (0.05)

0.0118 (0.30)

0.0075 (0.19)

0.0256 (0.65)

BSC

0.0433 (1.10)

MAX

0.0079 (0.20)

0.0035 (0.090)

0.028 (0.70)

0.020 (0.50)

8

؇

0

؇