background image

DATA  SHEET

Product specification

Supersedes data of April 1993

File under Integrated Circuits, IC02

June 1994

INTEGRATED CIRCUITS

Philips Semiconductors

TDA8712; TDF8712

8-bit digital-to-analog converters

background image

June 1994

2

Philips Semiconductors

Product specification

8-bit digital-to-analog converters

TDA8712; TDF8712

FEATURES

8-bit resolution

Conversion rate up to 50 MHz

TTL input levels

Internal reference voltage generator

Two complementary analog voltage outputs

No deglitching circuit required

Internal input register

Low power dissipation

Internal 75

 output load (connected to the analog

supply)

Very few external components required

Temperature range

– TDA8712: 0 to 70

°

C

– TDF8712:

40 to +85

°

C.

APPLICATIONS

High-speed digital-to-analog conversion

Digital TV including:

– field progressive scan

– line progressive scan

Subscriber TV decoders

Satellite TV decoders

Digital VCRs

Industrial and automotive.

GENERAL DESCRIPTION

The TDA8712 and TDF8712 are 8-bit digital-to-analog

converters (DACs) for video and other applications. They

convert the digital input signal into an analog voltage

output at a maximum conversion rate of 50 MHz. No

external reference voltage is required and all digital inputs

are TTL compatible.

ORDERING INFORMATION

TYPE NUMBER

PACKAGE

PINS

PIN POSITION

MATERIAL

CODE

TDA8712

16

DIP

plastic

SOT38-1

TDF8712

16

DIP

plastic

SOT38-1

TDA8712T

16

SO16L

plastic

SOT162-1

TDF8712T

16

SO16L

plastic

SOT162-1

background image

June 1994

3

Philips Semiconductors

Product specification

8-bit digital-to-analog converters

TDA8712; TDF8712

QUICK REFERENCE DATA

Notes

1. D0 to D7 are connected to V

CCD

 and CLK is connected to DGND.

2. The analog output voltages (V

OUT

 and V

OUT

) are negative with respect to V

CCA

 (see Table 1). The output resistance

between V

CCA

 and each of these outputs is typically 75

.

3. The

3 dB analog output bandwidth is determined by real time analysis of the output transient at a maximum input

code transition (code 0 to 255).

SYMBOL

PARAMETER

CONDITIONS

MIN.

TYP.

MAX.

UNIT

V

CCA

analog supply voltage

TDA8712

4.5

5.0

5.5

V

TDF8712

4.75

5.0

5.25

V

V

CCD

digital supply voltage

TDA8712

4.5

5.0

5.5

V

TDF8712

4.75

5.0

5.25

V

I

CCA

analog supply current

note 1

20

26

32

mA

I

CCD

digital supply current

note 1

16

23

30

mA

V

OUT(p-p)

full-scale analog output voltage

differences between V

OUT

 and

V

OUT

 (peak-to-peak value)

Z

L

 = 10 k

; note 2

1.45

1.60

1.75

V

Z

L

 = 75

; note 2

0.72

0.80

0.88

V

ILE

DC integral linear error

±

0.3

±

0.5

LSB

DLE

DC differential linearity error

±

0.3

±

0.5

LSB

f

clk(max)

maximum conversion rate

50

MHz

B

3 dB analog bandwidth

f

clk

 = 50 MHz; note 3

150

MHz

P

tot

total power dissipation

TDA8712

160

250

340

mW

TDF8712

170

250

325

mW

background image

June 1994

4

Philips Semiconductors

Product specification

8-bit digital-to-analog converters

TDA8712; TDF8712

BLOCK DIAGRAM

Fig.1  Block diagram.

handbook, full pagewidth

BAND-GAP

REFERENCE

CURRENT

REFERENCE

LOOP

CURRENT

GENERATORS

CURRENT

SWITCHES

REGISTERS

CLOCK INPUT

INTERFACE

MBC915 - 1

DATA

INPUT

INTERFACE

12

11

3

4

10

9

8

7

5

1

2

6

REF

100 nF

DGND

AGND

CLK

(LSB) D0

D1

D2

D3

D4

D5

D6

(MSB) D7

75

75

16

15

14

VCCA

VOUT

VOUT

VCCD

TDA8712

TDF8712

background image

June 1994

5

Philips Semiconductors

Product specification

8-bit digital-to-analog converters

TDA8712; TDF8712

PINNING

SYMBOL

PIN

DESCRIPTION

REF

1

voltage reference (decoupling)

AGND

2

analog ground

D2

3

data input; bit 2

D3

4

data input; bit 3

CLK

5

clock input

DGND

6

digital ground

D7

7

data input; bit 7 (MSB)

D6

8

data input; bit 6

D5

9

data input; bit 5

D4

10

data input; bit 4

D1

11

data input; bit 1

D0

12

data input; bit 0 (LSB)

V

CCD

13

digital supply voltage (+5 V)

V

OUT

14

analog output voltage

V

OUT

15

complimentary analog output voltage

V

CCA

16

analog supply voltage (+5 V)

Fig.2  Pin configuration.

handbook, halfpage

MBC901 - 1

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

TDA8712

TDF8712

V CCA

V OUT

VCCD

D0

D1

D4

D5

D6

D7

D3

D2

DGND

CLK

AGND

REF

VOUT

background image

June 1994

6

Philips Semiconductors

Product specification

8-bit digital-to-analog converters

TDA8712; TDF8712

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC134).

HANDLING

Inputs and outputs are protected against electrostatic discharges in normal handling. However, to be totally safe, it is

desirable to take normal precautions appropriate to handling integrated circuits.

THERMAL CHARACTERISTICS

SYMBOL

PARAMETER

MIN.

MAX.

UNIT

V

CCA

analog supply voltage

0.3

+7.0

V

V

CCD

digital supply voltage

0.3

+7.0

V

V

CC

supply voltage differences between V

CCA

and V

CCD

0.5

+0.5

V

V

GND

ground voltage differences between V

AGND

 and V

DGND

0.1

+0.1

V

V

I

input voltage (pins 3 to 5 and 7 to 12)

0.3

V

CCD

V

I

tot

total output current (I

OUT

 + I

OUT

; pins 14 and 15)

5

+26

mA

T

stg

storage temperature

55

+150

°

C

T

amb

operating ambient temperature

TDA8712

0

+70

°

C

TDF8712

40

+85

°

C

T

j

junction temperature

+150

°

C

SYMBOL

PARAMETER

VALUE

UNIT

R

th j-a

thermal resistance from junction to ambient in free air

SOT38-1

70

K/W

SOT162-1

90

K/W

background image

June 1994

7

Philips Semiconductors

Product specification

8-bit digital-to-analog converters

TDA8712; TDF8712

CHARACTERISTICS

V

CCA

 = V

16

 to V

2

 = 4.5 to 5.5 V (TDA8712) = 4.75 to 5.25 V (TDF8712); V

CCD

 = V

13

to V

6

 = 4.5 to 5.5 V (TDA8712) =

4.75 to 5.25 V (TDF8712); V

CCA

 to V

CCD

 =

0.5 to +0.5 V (TDA8712) =

0.25 to +0.25 V (TDF8712); REF decoupled to

AGND via a 100 nF capacitor; T

amb

 =

40 to +85

°

C; AGND and DGND shorted together; typical readings taken at

V

CCA

= V

CCD

= 5 V and T

amb

 = 25

°

C; unless otherwise specified.

SYMBOL

PARAMETER

CONDITIONS

MIN.

TYP.

MAX.

UNIT

Supply

V

CCA

analog supply voltage

TDA8712

4.5

5.0

5.5

V

TDF8712

4.75

5.0

5.25

V

V

CCD

digital supply voltage

TDA8712

4.5

5.0

5.5

V

TDF8712

4.75

5.0

5.25

V

I

CCA

analog supply current

note 1

20

26

32

mA

I

CCD

digital supply current

note 1

16

23

30

mA

V

GND

ground voltage differences

between V

AGND

 and V

DGND

0.1

+0.1

V

Inputs

D

IGITAL INPUTS

(D7

TO

D0)

AND CLOCK INPUT

CLK

V

IL

LOW level input voltage

0

0.8

V

V

IH

HIGH level input voltage

2.0

V

CCD

V

I

IL

LOW level input current

V

I

= 0.4 V

0.3

0.4

mA

I

IH

HIGH level input current

V

I

= 2.7 V

0.01

20

µ

A

f

clk(max)

maximum clock frequency

50

MHz

Outputs (referenced to V

CCA

)

V

OUT(p-p)

full-scale analog output voltage

differences between V

OUT

 and

V

OUT

 (peak-to-peak value)

Z

L

 = 10 k

; note 2

1.45

1.60

1.75

V

Z

L

 = 75

; note 2

0.72

0.80

0.88

V

V

os

analog offset output voltage

code = 0

3

25

mV

TC

VOUT

full-scale analog output voltage

temperature coefficient

200

µ

V/K

TC

Vos

analog offset output voltage

temperature coefficient

20

µ

V/K

B

3 dB analog bandwidth

f

clk

 = 50 MHz; note 3

150

MHz

G

diff

differential gain

0.6

%

ϕ

diff

differential phase

1

deg

Z

o

output impedance

75

Transfer function (f

clk

= 50 MHz)

ILE

DC integral linear error

±

0.3

±

0.5

LSB

DLE

DC differential linearity error

±

0.3

±

0.5

LSB

background image

June 1994

8

Philips Semiconductors

Product specification

8-bit digital-to-analog converters

TDA8712; TDF8712

Notes

1. D0 to D7 are connected to V

CCD

 and CLK is connected to DGND.

2. The analog output voltages (V

OUT

 and V

OUT

) are negative with respect to V

CCA

 (see Table 1). The output resistance

between V

CCA

 and each of these outputs is typically 75

.

3. The

3 dB analog output bandwidth is determined by real time analysis of the output transient at a maximum input

code transition (code 0 to 255).

4. The worst case characteristics are obtained at the transition from input code 0 to 255 and if an external load

impedance greater than 75

 is connected between V

OUT

 or V

OUT

 and V

CCA

. The specified values have been

measured with an active probe between V

OUT

 and AGND. No further load impedance between V

OUT

 and AGND has

been applied. All input data is latched at the rising edge of the clock. The output voltage remains stable (independent

of input data variations) during the HIGH level of the clock (CLK = HIGH). During a LOW-to-HIGH transition of the

clock (CLK = LOW), the DAC operates in the transparent mode (input data will be directly transferred to their

corresponding analog output voltages; see Fig.5.

5. The data set-up time (t

SU;DAT

) is the minimum period preceding the rising edge of the clock that the input data must

be stable in order to be correctly registered. A negative set-up time indicates that the data may be initiated after the

rising edge of the clock and still be recognized. The data hold time (t

HD;DAT

) is the minimum period following the rising

edge of the clock that the input data must be stable in order to be correctly registered. A negative hold time indicates

that the data may be released prior to the rising edge of the clock and still be recognized.

6. The definition of glitch energy and the measurement set-up are shown in Fig.6. The glitch energy is measured at the

input transition between code 127 and 128 and on the falling edge of the clock.

Switching characteristics (f

clk

= 50 MHz; notes 4 and 5; see Figs 3, 4 and 5)

t

SU;DAT

data set-up time

0.3

ns

t

HD;DAT

data hold time

2.0

ns

t

PD

propagation delay time

1.0

ns

t

S1

settling time 1

10% to 90% full-scale

change to

±

1 LSB

1.1

1.5

ns

t

S2

settling time 2

10% to 90% full-scale

change to

±

1 LSB

6.5

8.0

ns

t

d

input to 50% output delay time

3.0

5.0

ns

Output transients (glitches; f

clk

 = 50 MHz; note 6; see Fig.6)

E

g

glitch energy from code

transition 127 to 128

30

LSB

ns

SYMBOL

PARAMETER

CONDITIONS

MIN.

TYP.

MAX.

UNIT

background image

June 1994

9

Philips Semiconductors

Product specification

8-bit digital-to-analog converters

TDA8712; TDF8712

Table 1 Input coding and output voltages (typical values; referenced to V

CCA

, regardless of the offset voltage).

CODE

INPUT DATA (D7 to D0)

DAC OUTPUT VOLTAGES (V)

Z

L

 = 10 k

Z

L

 = 75

V

OUT

V

OUT

V

OUT

V

OUT

0

000 00 00

0

1.6

0

0.8

1

000 000 01

0.006

1.594

0.003

0.797

.

.

.

.

.

.

128

100 000 00

0.8

0.8

0.4

0.4

.

.

.

.

.

.

254

111 111 10

1.594

0.006

0.797

0.003

255

111 111 11

1.6

0

0.8

0

Fig.3  Data set-up and hold times.

The shaded areas indicate when the input data may change and be correctly registered. Data input update must be completed within 0.3 ns after the first

rising edge of the clock (t

SU;DAT

 is negative;

0.3 ns). Data must be held at least 2 ns after the rising edge (t

HD;DAT

 = +2 ns).

andbook, full pagewidth

HD; DAT

t

input data

CLK

MBC912

SU; DAT

t

3.0 V

1.3 V

0 V

3.0 V

1.3 V

0 V

stable

background image

June 1994

10

Philips Semiconductors

Product specification

8-bit digital-to-analog converters

TDA8712; TDF8712

Fig.4  Switching characteristics.

andbook, full pagewidth

MBC913

CLK

1.3 V

code 255

1.3 V

code 0

input data

(example of a

full-scale input

transition)

10 %

50 %

90 %

1 LSB

1 LSB

V

CCA   1.6 V

(code 255)

t d

S1

t

S2

t

PD

t

VOUT

VCCA

(code 0)

Fig.5  Latched and transparent mode.

During the transparent mode (CLK = LOW), any change of input data will be seen at the output. During the latched mode (CLK = HIGH), the analog output

remains stable regardless of any change at the input. A change of input data during the latched mode will be seen on the falling edge of the clock

(beginning of the transparent mode).

handbook, full pagewidth

MBC914 - 1

transparent

mode

latched

mode

1.3 V

CLK

input

codes

V OUT

transparent

mode

latched mode

(stable output)

beginning of

transparent

mode

analog

output

voltage

background image

June 1994

11

Philips Semiconductors

Product specification

8-bit digital-to-analog converters

TDA8712; TDF8712

Fig.6  Glitch energy measurement.

The value of the glitch energy is the sum of the shaded area measured in LSB

ns.

handbook, full pagewidth

MBC916

HP8082A

HP8082A

PULSE

GENERATOR

(SLAVE)

PULSE

GENERATOR

(SLAVE)

DIVIDER

(    10)

1/10 f

D7   MSB

D6

D5

D4

D3

D2

D1

D0   (LSB)

VOUT

TDA8712

TDF8712

f clk

PULSE

GENERATOR

(MASTER)

MODEL EH107

f clk

clk

1/10 f clk

DYNAMIC

PROBE

OSCILLO-

SCOPE

TEK P6201

TEK7104 and TEK7A26

R = 100 k

C = 3 pF

bandwidth = 20 MHz

clock

3

1

2

timing diagram

code 128

VOUT

code 127

1 LSB

time

VOUT

background image

June 1994

12

Philips Semiconductors

Product specification

8-bit digital-to-analog converters

TDA8712; TDF8712

INTERNAL PIN CONFIGURATIONS

Fig.7  Reference voltage generator decoupling.

handbook, full pagewidth

MBC911 - 1

CCA

V

AGND

VREF

regulation loop

output current

generators

REF

Fig.8  AGND and DGND.

handbook, halfpage

MBC908

AGND

DGND

substrate

Fig.9  D7 to D0 and CLK.

handbook, halfpage

MBC910

CCA

V

AGND

D0 to D7,

CLK

background image

June 1994

13

Philips Semiconductors

Product specification

8-bit digital-to-analog converters

TDA8712; TDF8712

Fig.10  Digital supply.

handbook, halfpage

MBC907

V

CCD

DGND

Fig.11  Analog outputs.

handbook, halfpage

MBC909 - 1

CCA

V

OUT

V

bit

n

bit

n

switches and

current generators

AGND

75 

75 

VOUT

Fig.12  Analog supply.

handbook, halfpage

MBC906

V

CCA

AGND

background image

June 1994

14

Philips Semiconductors

Product specification

8-bit digital-to-analog converters

TDA8712; TDF8712

APPLICATION INFORMATION

Additional application information can be supplied on request (please quote

“FTV/8901”).

Fig.13  Analog output voltage without external load.

(1) This is a recommended value for decoupling pin 1.

V

O

 =

V

OUT

; see Table 1; Z

L

 = 10 k

.

handbook, halfpage

MBC905 - 1

TDA8712

TDF8712

VOUT

AGND

REF

100 nF

(1)

VCCA

VO

VOUT

Fig.14  Analog output voltage with external load.

(1) This is a recommended value for decoupling pin 1.

External load Z

L

 = 75

 to

.

handbook, halfpage

MBC904 - 1

TDA8712

TDF8712

AGND

REF

100 nF

(1)

VCCA

ZL

VO ZL / (

)

75

Z L

VOUT

background image

June 1994

15

Philips Semiconductors

Product specification

8-bit digital-to-analog converters

TDA8712; TDF8712

Fig.15  Analog output voltage with AGND as reference.

(1) This is a recommended value for decoupling pin 1.

handbook, halfpage

MBC903 - 1

TDA8712

TDF8712

AGND

REF

AGND

100 nF

(1)

100 

µ

F

75 

VCCA

2

VO

VOUT

Fig.16  Example of anti-aliasing filter (analog output referenced to AGND).

handbook, full pagewidth

MSA656

39 pF

100 pF

56 pF

390 

27 pF

12 pF

10 

µ

H

12 

µ

H

Vo

390 

100

 µ

F

(pin 15)

or

VOUT

(pin 14)

TDA8712

TDF8712

[390/(780+75)]

VOUT

background image

June 1994

16

Philips Semiconductors

Product specification

8-bit digital-to-analog converters

TDA8712; TDF8712

Fig.17 Frequency response for filter shown in

Fig.16.

handbook, halfpage

0

10

20

40

0

100

20

MSA657

30

40

60

80

f   (MHz)

α

(dB)

i

Characteristics of Fig. 17

Order 5; adapted CHEBYSHEV

Ripple

ρ ≤

0.1 dB

f = 6.7 MHz at

3 dB

f

notch

 = 9.7 MHz and 13.3 MHz.

Fig.18  Differential mode (improved supply voltage ripple rejection).

(1) This is a recommended value for decoupling pin 1.

handbook, full pagewidth

MBC902

TDA8712

TDF8712

VOUT

AGND

REF

AGND

100 nF

(1)

100 

µ

F

100 

µ

F

2 X V   (R2/R1)

O

R2

R1

R1

R2

VOUT

background image

June 1994

17

Philips Semiconductors

Product specification

8-bit digital-to-analog converters

TDA8712; TDF8712

PACKAGE OUTLINES

Fig.19  Plastic dual in-line package; 16 leads (300 mil) SOT38-1.

Dimensions in mm.

handbook, full pagewidth

8.25

7.80

0.32 max

7.62

9.5

8.3

MSA254

16

1

9

8

1.4 max

6.48

6.14

22.00

21.35

3.7

max

4.7

max

0.51

min

3.9

3.4

seating plane

0.254

M

0.53

max

2.54

(7x)

2.2

max

background image

June 1994

18

Philips Semiconductors

Product specification

8-bit digital-to-analog converters

TDA8712; TDF8712

Fig.20  Plastic small outline package; 16 leads; large body (SOT162-1).

Dimensions in mm.

handbook, full pagewidth

7.6

7.4

10.65

10.00

A

MBC233 - 1

0.3

0.1

2.45

2.25

1.1

0.5

0.32

0.23

1.1

1.0

0 to 8

o

2.65

2.35

detail A

S

10.5

10.1

0.1 S

1

8

9

16

pin 1

index

0.9

0.4

(4x)

0.25 M

(16x)

0.49

0.36

1.27

background image

June 1994

19

Philips Semiconductors

Product specification

8-bit digital-to-analog converters

TDA8712; TDF8712

SOLDERING

Plastic dual in-line packages

B

Y DIP OR WAVE

The maximum permissible temperature of the solder is

260

°

C; this temperature must not be in contact with the

joint for more than 5 s. The total contact time of successive

solder waves must not exceed 5 s.

The device may be mounted up to the seating plane, but

the temperature of the plastic body must not exceed the

specified storage maximum. If the printed-circuit board has

been pre-heated, forced cooling may be necessary

immediately after soldering to keep the temperature within

the permissible limit.

R

EPAIRING SOLDERED JOINTS

Apply a low voltage soldering iron below the seating plane

(or not more than 2 mm above it). If its temperature is

below 300

°

C, it must not be in contact for more than 10 s;

if between 300 and 400

°

C, for not more than 5 s.

Plastic small-outline packages

B

Y WAVE

During placement and before soldering, the component

must be fixed with a droplet of adhesive. After curing the

adhesive, the component can be soldered. The adhesive

can be applied by screen printing, pin transfer or syringe

dispensing.

Maximum permissible solder temperature is 260

°

C, and

maximum duration of package immersion in solder bath is

10 s, if allowed to cool to less than 150

°

C within 6 s.

Typical dwell time is 4 s at 250

°

C.

A modified wave soldering technique is recommended

using two solder waves (dual-wave), in which a turbulent

wave with high upward pressure is followed by a smooth

laminar wave. Using a mildly-activated flux eliminates the

need for removal of corrosive residues in most

applications.

B

Y SOLDER PASTE REFLOW

Reflow soldering requires the solder paste (a suspension

of fine solder particles, flux and binding agent) to be

applied to the substrate by screen printing, stencilling or

pressure-syringe dispensing before device placement.

Several techniques exist for reflowing; for example,

thermal conduction by heated belt, infrared, and

vapour-phase reflow. Dwell times vary between 50 and

300 s according to method. Typical reflow temperatures

range from 215 to 250

°

C.

Preheating is necessary to dry the paste and evaporate

the binding agent. Preheating duration: 45 min at 45

°

C.

R

EPAIRING SOLDERED JOINTS

(

BY HAND

-

HELD SOLDERING

IRON OR PULSE

-

HEATED SOLDER TOOL

)

Fix the component by first soldering two, diagonally

opposite, end pins. Apply the heating tool to the flat part of

the pin only. Contact time must be limited to 10 s at up to

300

°

C. When using proper tools, all other pins can be

soldered in one operation within 2 to 5 s at between 270

and 320

°

C. (Pulse-heated soldering is not recommended

for SO packages.)

For pulse-heated solder tool (resistance) soldering of VSO

packages, solder is applied to the substrate by dipping or

by an extra thick tin/lead plating before package

placement.

background image

June 1994

20

Philips Semiconductors

Product specification

8-bit digital-to-analog converters

TDA8712; TDF8712

DEFINITIONS

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these

products can reasonably be expected to result in personal injury. Philips customers using or selling these products for

use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such

improper use or sale.

Data sheet status

Objective specification

This data sheet contains target or goal specifications for product development.

Preliminary specification

This data sheet contains preliminary data; supplementary data may be published later.

Product specification

This data sheet contains final product specifications.

Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or

more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation

of the device at these or at any other conditions above those given in the Characteristics sections of the specification

is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

background image

June 1994

21

Philips Semiconductors

Product specification

8-bit digital-to-analog converters

TDA8712; TDF8712

NOTES

background image

June 1994

22

Philips Semiconductors

Product specification

8-bit digital-to-analog converters

TDA8712; TDF8712

NOTES

background image

June 1994

23

Philips Semiconductors

Product specification

8-bit digital-to-analog converters

TDA8712; TDF8712

NOTES

background image

Philips Semiconductors

Philips Semiconductors – a worldwide company

Argentina: IEROD, Av. Juramento 1992 - 14.b, (1428)

BUENOS AIRES, Tel. (541)786 7633, Fax. (541)786 9367

Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,

Tel. (02)805 4455, Fax. (02)805 4466

Austria: Triester Str. 64, A-1101 WIEN, P.O. Box 213,

Tel. (01)60 101-1236, Fax. (01)60 101-1211

Belgium: Postbus 90050, 5600 PB EINDHOVEN, The Netherlands,

Tel. (31)40 783 749, Fax. (31)40 788 399

Brazil: Rua do Rocio 220 - 5

th

 floor, Suite 51,

CEP: 04552-903-SÃO PAULO-SP, Brazil.

P.O. Box 7383 (01064-970).

Tel. (011)821-2327, Fax. (011)829-1849

Canada: INTEGRATED CIRCUITS:

Tel. (800)234-7381, Fax. (708)296-8556

DISCRETE SEMICONDUCTORS: 601 Milner Ave,

SCARBOROUGH, ONTARIO, M1B 1M8,

Tel. (0416)292 5161 ext. 2336, Fax. (0416)292 4477

Chile: Av. Santa Maria 0760, SANTIAGO,

Tel. (02)773 816, Fax. (02)777 6730

Colombia: IPRELENSO LTDA, Carrera 21 No. 56-17,

77621 BOGOTA, Tel. (571)249 7624/(571)217 4609,

Fax. (571)217 4549

Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S,

Tel. (032)88 2636, Fax. (031)57 1949

Finland: Sinikalliontie 3, FIN-02630 ESPOO,

Tel. (9)0-50261, Fax. (9)0-520971

France: 4 Rue du Port-aux-Vins, BP317,

92156 SURESNES Cedex,

Tel. (01)4099 6161, Fax. (01)4099 6427

Germany: PHILIPS COMPONENTS UB der Philips G.m.b.H.,

P.O. Box 10 63 23, 20043 HAMBURG,

Tel. (040)3296-0, Fax. (040)3296 213.

Greece: No. 15, 25th March Street, GR 17778 TAVROS,

Tel. (01)4894 339/4894 911, Fax. (01)4814 240

Hong Kong: PHILIPS HONG KONG Ltd., Components Div.,

6/F Philips Ind. Bldg., 24-28 Kung Yip St., KWAI CHUNG, N.T.,

Tel. (852)424 5121, Fax. (852)428 6729

India: Philips INDIA Ltd, Components Dept,

Shivsagar Estate, A Block ,

Dr. Annie Besant Rd. Worli, Bombay 400 018

Tel. (022)4938 541, Fax. (022)4938 722

Indonesia: Philips House, Jalan H.R. Rasuna Said Kav. 3-4,

P.O. Box 4252, JAKARTA 12950,

Tel. (021)5201 122, Fax. (021)5205 189

Ireland: Newstead, Clonskeagh, DUBLIN 14,

Tel. (01)640 000, Fax. (01)640 200

Italy: PHILIPS COMPONENTS S.r.l.,

Viale F. Testi, 327, 20162 MILANO,

Tel. (02)6752.3302, Fax. (02)6752 3300.

Japan: Philips Bldg 13-37, Kohnan 2 -chome, Minato-ku, TOKYO 108,

Tel. (03)3740 5028, Fax. (03)3740 0580

Korea: (Republic of)  Philips House, 260-199 Itaewon-dong,

Yongsan-ku, SEOUL, Tel. (02)794-5011, Fax. (02)798-8022

Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA,

SELANGOR, Tel. (03)750 5214, Fax. (03)757 4880

Mexico: Philips Components, 5900 Gateway East, Suite 200,

EL PASO, TX 79905, Tel. 9-5(800)234-7381, Fax. (708)296-8556

Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB

Tel. (040)783749, Fax. (040)788399

New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,

Tel. (09)849-4160, Fax. (09)849-7811

Norway: Box 1, Manglerud 0612, OSLO,

Tel. (022)74 8000, Fax. (022)74 8341

Pakistan: Philips Electrical Industries of Pakistan Ltd.,

Exchange Bldg. ST-2/A, Block 9, KDA Scheme 5, Clifton,

KARACHI 75600, Tel. (021)587 4641-49,

Fax. (021)577035/5874546.

Philippines: PHILIPS SEMICONDUCTORS PHILIPPINES Inc,

106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,

Metro MANILA, Tel. (02)810 0161, Fax. (02)817 3474

Portugal: PHILIPS PORTUGUESA, S.A.,

Rua dr. António Loureiro Borges 5, Arquiparque - Miraflores,

Apartado 300, 2795 LINDA-A-VELHA,

Tel. (01)14163160/4163333, Fax. (01)14163174/4163366.

Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,

Tel. (65)350 2000, Fax. (65)251 6500

South Africa: S.A. PHILIPS Pty Ltd., Components Division,

195-215 Main Road Martindale, 2092 JOHANNESBURG,

P.O. Box 7430 Johannesburg 2000,

Tel. (011)470-5911, Fax. (011)470-5494.

Spain: Balmes 22, 08007 BARCELONA,

Tel. (03)301 6312, Fax. (03)301 42 43

Sweden: Kottbygatan 7, Akalla. S-164 85 STOCKHOLM,

Tel. (0)8-632 2000, Fax. (0)8-632 2745

Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,

Tel. (01)488 2211, Fax. (01)481 77 30

Taiwan: PHILIPS TAIWAN Ltd., 23-30F, 66, Chung Hsiao West

Road, Sec. 1. Taipeh, Taiwan ROC, P.O. Box 22978,

TAIPEI 100, Tel. (02)388 7666, Fax. (02)382 4382.

Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,

209/2 Sanpavuth-Bangna Road Prakanong,

Bangkok 10260, THAILAND,

Tel. (662)398-0141, Fax. (662)398-3319.

Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,

Tel. (0 212)279 2770, Fax. (0212)269 3094

United Kingdom: Philips Semiconductors Limited, P.O. Box 65,

Philips House, Torrington Place, LONDON, WC1E 7HD,

Tel. (071)436 41 44, Fax. (071)323 03 42

United States: INTEGRATED CIRCUITS:

811 East Arques Avenue, SUNNYVALE, CA 94088-3409,

Tel. (800)234-7381, Fax. (708)296-8556

DISCRETE SEMICONDUCTORS:  2001 West Blue Heron Blvd.,

P.O. Box 10330, RIVIERA BEACH, FLORIDA 33404,

Tel. (800)447-3762 and (407)881-3200, Fax. (407)881-3300

Uruguay: Coronel Mora 433, MONTEVIDEO,

Tel. (02)70-4044, Fax. (02)92 0601

For all other countries apply to: Philips Semiconductors,

International Marketing and Sales, Building BAF-1,

P.O. Box 218, 5600 MD, EINDHOVEN, The Netherlands,

Telex 35000 phtcnl, Fax. +31-40-724825

SCD31

© Philips Electronics N.V. 1994

All rights are reserved. Reproduction in whole or in part is prohibited without the

prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation

or contract, is believed to be accurate and reliable and may be changed without

notice. No liability will be accepted by the publisher for any consequence of its

use. Publication thereof does not convey nor imply any license under patent- or

other industrial or intellectual property rights.

Printed in The Netherlands

533061/1500/03/pp24

Date of release: June 1994

Document order number:

9397 734 70011


Document Outline