background image

TLC193, TLC393

DUAL MICROPOWER LinCMOS

 VOLTAGE COMPARATOR

 

 

SLCS115D – DECEMBER 1986 – REVISED JANUARY 1999

1

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

D

Very Low Power . . . 110 

µ

W Typ at 5 V

D

Fast Response Time . . . t

PLH

 = 2.5 

µ

s Typ

With 5-mV Overdrive

D

Single Supply Operation:

TLC393C . . . 3  V  to  16  V

TLC393I . . . 3  V  to  16  V

TLC393Q . . . 4  V  to  16  V

TLC393M . . . 4  V  to  16  V

TLC193M . . . 4  V  to  16  V

D

On-Chip ESD Protection

     

description

The TLC193 and TLC393 consist of dual

independent  micropower voltage comparators

designed to operate from a single supply. They

are functionally similar to the LM393 but uses

one-twentieth the power for similar response

times. The open-drain MOS output stage

interfaces to a variety of loads and supplies. For

a similar device with a push-pull output

configuration (see the TLC3702 data sheet).

Texas Instruments LinCMOS

 process offers

superior analog performance to standard CMOS

processes. Along with the standard CMOS

advantages of low power without sacrificing

speed, high input impedance, and low bias

currents, the LinCMOS

 process offers ex-

tremely stable input offset voltages, even with

differential input stresses of several volts. This

characteristic makes it possible to build reliable

CMOS comparators.

The TLC393C is characterized for operation over the commercial temperature range of T

A

 = 0

°

C to 70

°

C. The

TLC393I is characterized for operation over the extended industrial temperature range of T

A

 = – 40

°

C to 85

°

C.

The TLC393Q is characterized for operation over the full automotive temperature range of T

A

 = – 40

°

C to 125

°

C.

The TLC193M and TLC393M are characterized for operation over the full military temperature range of 

T

A

 = – 55

°

C to 125

°

C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of

Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Copyright 

©

 1999, Texas Instruments Incorporated

PRODUCTION DATA information is current as of publication date.

Products conform to specifications per the terms of Texas Instruments

standard warranty. Production processing does not necessarily include

testing of all parameters.

3

2

1 20 19

9 10 11 12 13

4

5

6

7

8

18

17

16

15

14

NC

2OUT

NC

2IN –

NC

NC

1IN –

NC

1IN +

NC

NC

1OUT

NC

2IN+

NC

V

NC

GND

NC

NC

DD

D, JG, P, OR PW PACKAGE

(TOP VIEW)

1

2

3

4

8

7

6

5

1OUT

1IN –

1IN +

GND

V

DD

2OUT

2IN –

2IN +

NC – No internal connection

OUT

symbol (each comparator)

IN +

IN –

FK PACKAGE

(TOP VIEW)

LinCMOS is a trademark of Texas Instruments Incorporated.

background image

TLC193, TLC393

DUAL MICROPOWER LinCMOS

 VOLTAGE COMPARATOR

 

 

SLCS115D – DECEMBER 1986 – REVISED JANUARY 1999

2

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

AVAILABLE OPTIONS

VIOmax

PACKAGES

TA

VIOmax

at 25

°

C

SMALL OUTLINE

(D)

CHIP CARRIER

(FK)

CERAMIC DIP

(JG)

PLASTIC DIP

(P)

TSSOP

(PW)

0

°

C to 70

°

C

5 mV

TLC393CD

TLC393CP

TLC393CPWLE

– 40

°

C to 85

°

C

5 mV

TLC393ID

TLC393IP

TLC393IPWLE

– 40

°

C to 125

°

C

5 mV

TLC393QD

– 55

°

C to 125

°

C

5 mV

TLC393MD

TLC193MFK

TLC193MJG

TLC393MP

† The D package is available taped and reeled. Add the suffix R to the device type (e.g., TLC393CDR).

schematic

OUT

OPEN-DRAIN CMOS OUTPUT

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage range, V

DD

 (see Note 1) 

– 0.3 V to 18 V

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Differential input voltage, V

ID

 (see Note 2) 

±

18 V

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Input voltage range, V

I

 

– 0.3 V to V

DD

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Output voltage range, V

O

 

– 0.3 V to 16 V

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Input current, I

I

 

±

5 mA

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Output current, I

O

 (each output) 

 20 mA

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Total supply current into V

DD

 40 

mA

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Total current out of GND 

40 mA

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Continuous total power dissipation 

See Dissipation Rating Table

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Operating free-air temperature range: TLC393C 

0

°

C to 70

°

C

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

TLC393I – 

40

°

C to 85

°

C

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

TLC393Q – 

40

°

C to 125

°

C

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

TLC393M – 

55

°

C to 125

°

C

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

TLC193M – 

55

°

C to 125

°

C

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Storage temperature range 

– 65

°

C to 150

°

C

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Case temperature for 60 seconds: FK package 

260

°

C

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package 

260

°

C

. . . . . . . . . . . . . . . . . 

Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package 

300

°

C

. . . . . . . . . . . . . . . . . . . . 

† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and

functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not

implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES:

1. All voltage values, except differential voltages, are with respect to network ground.

2. Differential voltages are at IN+ with respect to IN –.

DISSIPATION RATING TABLE

PACKAGE

TA 

 25

°

C

POWER RATING

DERATING FACTOR

ABOVE TA = 25

°

C

TA = 70

°

C

POWER RATING

TA = 85

°

C

POWER RATING

TA = 125

°

C

POWER RATING

D

725 mW

5.8 mW/

°

C

464 mW

377 mW

145 mW

FK

1375 mW

11.0 mW/

°

C

880 mW

715 mW

275 mW

JG

1050 mW

8.4 mW/

°

C

672 mW

546 mW

210 mW

P

1000 mW

8.0 mW/

°

C

640 mW

520 mW

PW

525 mW

4.2 mW/

°

C

336 mW

273 mW

background image

TLC193, TLC393

DUAL MICROPOWER LinCMOS

 VOLTAGE COMPARATOR

 

 

SLCS115D – DECEMBER 1986 – REVISED JANUARY 1999

3

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

recommended operating conditions

TLC393C

UNIT

MIN

NOM

MAX

UNIT

Supply voltage, VDD

3

5

16

V

Common-mode input voltage, VIC

–0.2

VDD – 1.5

V

Low-level output current, IOL

20

mA

Operating free-air temperature, TA

0

70

°

C

electrical characteristics at specified operating free-air temperature, V

DD

 = 5 V (unless otherwise

noted)

PARAMETER

TEST CONDITIONS†

TA

TLC393C

UNIT

PARAMETER

TEST CONDITIONS†

TA

MIN

TYP

MAX

UNIT

VIO

Input offset voltage

VIC = VICRmin,

VDD 5 V to 10 V

25

°

C

1.4

5

mV

VIO

Input offset voltage

VDD = 5 V to 10 V,

See Note 3

0

°

C to 70

°

C

6.5

mV

IIO

Input offset current

VIC = 2 5 V

25

°

C

1

pA

IIO

Input offset current

VIC = 2.5 V

70

°

C

0.3

nA

IIB

Input bias current

VIC = 2 5 V

25

°

C

5

pA

IIB

Input bias current

VIC = 2.5 V

70

°

C

0.6

nA

VICR

Common mode input voltage range

25

°

C

0 to VDD – 1

V

VICR

Common-mode input voltage range

0

°

C to 70

°

C

0 to VDD – 1.5

V

25

°

C

84

CMMR

Common-mode rejection ratio

VIC = VICRmin

70

°

C

84

dB

0

°

C

84

25

°

C

85

kSVR

Supply-voltage rejection ratio

VDD = 5 V to 10 V

70

°

C

85

dB

0

°

C

85

VOL

Low level output voltage

VID = 1 V IOL = 6 mA

25

°

C

300

400

mV

VOL

Low-level output voltage

VID = –1 V, IOL = 6 mA

70

°

C

650

mV

IOH

High level output current

VID = 1 V

VO = 5 V

25

°

C

0.8

40

nA

IOH

High-level output current

VID = 1 V,

VO = 5 V

70

°

C

1

µ

A

IDD

Supply current (both comparators)

Outputs low No load

25

°

C

22

40

µ

A

IDD

Supply current (both comparators)

Outputs low, No load

0

°

C to 70

°

C

50

µ

A

† All characteristics are measured with zero common-mode voltage unless otherwise noted.

NOTE 3: The offset voltage limits given are the maximum values required to drive the output up to 4.5 V or down to 0.3 V.

background image

TLC193, TLC393

DUAL MICROPOWER LinCMOS

 VOLTAGE COMPARATOR

 

 

SLCS115D – DECEMBER 1986 – REVISED JANUARY 1999

4

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

recommended operating conditions

TLC393I

UNIT

MIN

NOM

MAX

UNIT

Supply voltage, VDD

3

5

16

V

Common-mode input voltage, VIC

– 0.2

VDD – 1.5

V

Low-level output current, IOL

20

mA

Operating free-air temperature, TA

– 40

85

°

C

electrical characteristics at specified operating free-air temperature, V

DD

 = 5 V (unless otherwise

noted)

PARAMETER

TEST CONDITIONS†

TA

TLC393I

UNIT

PARAMETER

TEST CONDITIONS†

TA

MIN

TYP

MAX

UNIT

VIO

Input offset voltage

VIC = VICRmin,

VDD 5 V to 10 V

25

°

C

1.4

5

mV

VIO

Input offset voltage

VDD = 5 V to 10 V,

See Note 3

–40

°

C to 85

°

C

7

mV

IIO

Input offset current

VIC = 2 5 V

25

°

C

1

pA

IIO

Input offset current

VIC = 2.5 V

85

°

C

1

nA

IIB

Input bias current

VIC = 2 5 V

25

°

C

5

pA

IIB

Input bias current

VIC = 2.5 V

85

°

C

2

nA

VICR

Common mode input voltage range

25

°

C

0 to VDD – 1

V

VICR

Common-mode input voltage range

–40

°

C to 85

°

C

0 to VDD – 1.5

V

25

°

C

84

CMMR

Common-mode rejection ratio

VIC = VICRmin

85

°

C

84

dB

– 40

°

C

84

25

°

C

85

kSVR

Supply-voltage rejection ratio

VDD = 5 V to 10 V

85

°

C

85

dB

– 40

°

C

84

VOL

Low level output voltage

VID = 1 V IOL = 6 mA

25

°

C

300

400

mV

VOL

Low-level output voltage

VID = –1 V, IOL = 6 mA

85

°

C

700

mV

IOH

High level output current

VID = 1 V

VO = 5 V

25

°

C

0.8

40

nA

IOH

High-level output current

VID = 1 V,

VO = 5 V

85

°

C

1

µ

A

IDD

Supply current (both comparators)

Outputs low No load

25

°

C

22

40

µ

A

IDD

Supply current (both comparators)

Outputs low, No load

–40

°

C to 85

°

C

65

µ

A

† All characteristics are measured with zero common-mode voltage unless otherwise noted.

NOTE 3: The offset voltage limits given are the maximum values required to drive the output up to 4.5 V or down to 0.3 V.

background image

TLC193, TLC393

DUAL MICROPOWER LinCMOS

 VOLTAGE COMPARATOR

 

 

SLCS115D – DECEMBER 1986 – REVISED JANUARY 1999

5

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

recommended operating conditions

TLC393Q

UNIT

MIN

NOM

MAX

UNIT

Supply voltage, VDD

4

5

16

V

Common-mode input voltage, VIC

0

VDD – 1.5

V

Low-level output current, IOL

20

mA

Operating free-air temperature, TA

–40

125

°

C

electrical characteristics at specified operating free-air temperature, V

DD

 = 5 V (unless otherwise

noted)

PARAMETER

TEST CONDITIONS†

TA

TLC393Q

UNIT

PARAMETER

TEST CONDITIONS†

TA

MIN

TYP

MAX

UNIT

VIO

Input offset voltage

VIC = VICRmin,

VDD 5 V to 10 V

25

°

C

1.4

5

mV

VIO

Input offset voltage

VDD = 5 V to 10 V,

See Note 4

–40

°

C to 125

°

C

10

mV

IIO

Input offset current

VIC = 2 5 V

25

°

C

1

pA

IIO

Input offset current

VIC = 2.5 V

125

°

C

15

nA

IIB

Input bias current

VIC = 2 5 V

25

°

C

5

pA

IIB

Input bias current

VIC = 2.5 V

125

°

C

30

nA

VICR

Common mode input voltage range

25

°

C

0 to VDD – 1

V

VICR

Common-mode input voltage range

–40

°

C to 125

°

C

0 to VDD – 1.5

V

25

°

C

84

CMMR

Common-mode rejection ratio

VIC = VICRmin

125

°

C

84

dB

–40

°

C

84

25

°

C

85

kSVR

Supply-voltage rejection ratio

VDD = 5 V to 10 V

125

°

C

84

dB

–40

°

C

84

VOL

Low level output voltage

VID = 1 V IOL = 6 mA

25

°

C

300

400

mV

VOL

Low-level output voltage

VID = –1 V, IOL = 6 mA

125

°

C

800

mV

IOH

High level output current

VID = 1 V

VO = 5 V

25

°

C

0.8

40

nA

IOH

High-level output current

VID = 1 V,

VO = 5 V

125

°

C

1

µ

A

IDD

Supply current (both comparators)

Outputs low No load

25

°

C

22

40

µ

A

IDD

Supply current (both comparators)

Outputs low, No load

–40

°

C to 125

°

C

90

µ

A

† All characteristics are measured with zero common-mode voltage unless otherwise noted.

NOTE 4: The offset voltage limits given are the maximum values required to drive the output up to 4.5 V or down to 0.3 V (with a 2.5-k

Ω 

load to

VDD).

background image

TLC193, TLC393

DUAL MICROPOWER LinCMOS

 VOLTAGE COMPARATOR

 

 

SLCS115D – DECEMBER 1986 – REVISED JANUARY 1999

6

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

recommended operating conditions

TLC193M, TLC393M

UNIT

MIN

NOM

MAX

UNIT

Supply voltage, VDD

4

5

16

V

Common-mode input voltage, VIC

0

VDD – 1.5

V

Low-level output current, IOL

20

mA

Operating free-air temperature, TA

–55

125

°

C

electrical characteristics at specified operating free-air temperature, V

DD

 = 5 V (unless otherwise

noted)

PARAMETER

TEST CONDITIONS†

TA

TLC193M, TLC393M

UNIT

PARAMETER

TEST CONDITIONS†

TA

MIN

TYP

MAX

UNIT

VIO

Input offset voltage

VIC = VICRmin,

VDD 5 V to 10 V

25

°

C

1.4

5

mV

VIO

Input offset voltage

VDD = 5 V to 10 V,

See Note 4

–55

°

C to 125

°

C

10

mV

IIO

Input offset current

VIC = 2 5 V

25

°

C

1

pA

IIO

Input offset current

VIC = 2.5 V

125

°

C

15

nA

IIB

Input bias current

VIC = 2 5 V

25

°

C

5

pA

IIB

Input bias current

VIC = 2.5 V

125

°

C

30

nA

VICR

Common mode input voltage range

25

°

C

0 to VDD – 1

V

VICR

Common-mode input voltage range

–55

°

C to 125

°

C

0 to VDD – 1.5

V

25

°

C

84

CMMR

Common-mode rejection ratio

VIC = VICRmin

125

°

C

84

dB

–55

°

C

84

25

°

C

85

kSVR

Supply-voltage rejection ratio

VDD = 5 V to 10 V

125

°

C

84

dB

–55

°

C

84

VOL

Low level output voltage

VID = 1 V IOL = 6 mA

25

°

C

300

400

mV

VOL

Low-level output voltage

VID = –1 V, IOL = 6 mA

125

°

C

800

mV

IOH

High level output current

VID = 1 V

VO = 5 V

25

°

C

0.8

40

nA

IOH

High-level output current

VID = 1 V,

VO = 5 V

125

°

C

1

µ

A

IDD

Supply current (both comparators)

Outputs low No load

25

°

C

22

40

µ

A

IDD

Supply current (both comparators)

Outputs low, No load

–55

°

C to 125

°

C

90

µ

A

† All characteristics are measured with zero common-mode voltage unless otherwise noted.

NOTE 4: The offset voltage limits given are the maximum values required to drive the output up to 4.5 V or down to 0.3 V (with a 2.5-k

Ω 

load to

VDD).

background image

TLC193, TLC393

DUAL MICROPOWER LinCMOS

 VOLTAGE COMPARATOR

 

 

SLCS115D – DECEMBER 1986 – REVISED JANUARY 1999

7

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

switching characteristics, V

DD

 = 5 V, T

A

 = 25

°

C (see Figure 3)

PARAMETER

TEST CONDITIONS

TLC393C, TLC393I

TLC393Q, TLC193M,

TLC393M

UNIT

MIN

TYP

MAX

Overdrive = 2 mV

4.5

f

10 kH

Overdrive = 5 mV

2.5

tPLH

Propagation delay time, low-to-high-level output

f = 10 kHz,

CL = 15 pF

Overdrive = 10 mV

1.7

µ

s

CL = 15  F

Overdrive = 20 mV

1.2

Overdrive = 40 mV

1.1

VI = 1.4-V step at IN +

1.1

Overdrive = 2 mV

3.6

f

10 kH

Overdrive = 5 mV

2.1

tPHL

Propagation delay time, high-to-low-level output

f = 10 kHz,

CL = 15 pF

Overdrive = 10 mV

1.3

µ

s

CL = 15  F

Overdrive = 20 mV

0.85

Overdrive = 40 mV

0.55

VI = 1.4-V step at IN +

0.10

tf

Fall time, output

f = 10 kHz,

CL = 15 pF

Overdrive = 50 mV

22

ns

PARAMETER MEASUREMENT INFORMATION

The TLC393 contains a digital output stage which, if held in the linear region of the transfer curve, can cause

damage to the device. Conventional operational amplifier/comparator testing incorporates the use of a servo

loop that is designed to force the device output to a level within this linear region. Since the servo-loop method

of testing cannot be used, the following alternatives for testing parameters such as input offset voltage,

common-mode rejection ratio, etc., are suggested.

To verify that the input offset voltage falls within the limits specified, the limit value is applied to the input as shown

in Figure 1(a). With the noninverting input positive with respect to the inverting input, the output should be high.

With the input polarity reversed, the output should be low.

A similar test can be made to verify the input offset voltage at the common-mode extremes. The supply voltages

can be slewed as shown in Figure 1(b) for the V

ICR

 test, rather than changing the input voltages, to provide

greater accuracy.

+

5 V

Applied VIO

 Limit

VO

+

1 V

Applied VIO

 Limit

VO

– 4 V

(a) VIO WITH VIC = 0 V

(b) VIO WITH VIC = 4 V

5.1 k

5.1 k

Figure 1. Method for Verifying That Input Offset Voltage Is Within Specified Limits

background image

TLC193, TLC393

DUAL MICROPOWER LinCMOS

 VOLTAGE COMPARATOR

 

 

SLCS115D – DECEMBER 1986 – REVISED JANUARY 1999

8

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

PARAMETER MEASUREMENT INFORMATION

A close approximation of the input offset voltage can be obtained by using a binary search method to vary the

differential input voltage while monitoring the output state. When the applied input voltage differential is equal,

but opposite in polarity, to the input offset voltage, the output changes states.

Figure 2 illustrates a practical circuit for direct dc measurement of input offset voltage that does not bias the

comparator in the linear region. The circuit consists of a switching-mode servo loop in which U1A generates

a triangular waveform of approximately 20-mV amplitude. U1B acts as a buffer, with C2 and R4 removing any

residual dc offset. The signal is then applied to the inverting input of the comparator under test, while the

noninverting input is driven by the output of the integrator formed by U1C through the voltage divider formed

by R9 and R10. The loop reaches a stable operating point when the output of the comparator under test has

a duty cycle of exactly 50%, which can only occur when the incoming triangle wave is sliced symmetrically or

when the voltage at the noninverting input exactly equals the input offset voltage.

The voltage divider formed by R9 and R10 provides an increase in input offset voltage by a factor of 100 to

make measurement easier. The values of R5, R8, R9, and R10 can significantly influence the accuracy of the

reading; therefore, it is suggested that their tolerance level be 1% or lower.

Measuring the extremely low values of input current requires isolation from all other sources of leakage current

and compensation for the leakage of the test socket and board. With a good picoammeter, the socket and board

leakage can be measured with no device in the socket. Subsequently, this open-socket leakage value can be

subtracted from the measurement obtained with a device in the socket to obtain the actual input current of the

device.

+

DUT

VDD

+

+

+

C2

µ

F

R4

47 k

R5

1.8 k

Ω,

 1%

C3

0.68 

µ

F

U1C

1/4 TLC274CN

U1B

1/4 TLC274CN

U1A

1/4 TLC274CN

R7

1 M

R8

1.8 k

Ω,

 1%

R9

10 k

Ω,

 1%

R1

240 k

R2

10 k

C1

0.1 

µ

F

R3

100 

C4

0.1 

µ

F

Integrator

R10

100 

Ω, 

1%

Buffer

Triangle

Generator

VIO

(X100)

R6

5.1 k

Figure 2. Circuit for Input Offset Voltage Measurement

background image

TLC193, TLC393

DUAL MICROPOWER LinCMOS

 VOLTAGE COMPARATOR

 

 

SLCS115D – DECEMBER 1986 – REVISED JANUARY 1999

9

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

PARAMETER MEASUREMENT INFORMATION

Propagation delay time is defined as the interval between the application of an input step function and the instant

when the output reaches 50% of its maximum value. Propagation delay time, low-to-high-level output, is

measured from the leading edge of the input pulse, while propagation delay time, high-to-low-level output, is

measured from the trailing edge of the input pulse. Propagation delay time measurement at low input signal

levels can be greatly affected by the input offset voltage. The offset voltage should be balanced by the

adjustment at the inverting input (as shown in Figure 3) so that the circuit is just at the transition point. Then a

low signal, for example, 105 mV or 5 mV overdrive, causes the output to change state.

DUT

VDD

CL

(see Note A)

Pulse

Generator

10 

10 Turn

1 V

– 1 V

1 k

50 

1

 µ

F

0.1

 µ

F

TEST CIRCUIT

100 mV

Input

Overdrive

50%

tPLH

100 mV

Input

Overdrive

90%

50%

10%

tf

tPHL

Low-to-High-

Level Output

High-to-Low-

Level Output

VOLTAGE WAVEFORMS

5.1 k

Input Offset Voltage

Compensation

Adjustment

90%

tr

10%

NOTE A: CL includes probe and jig capacitance.

Figure 3. Propagation Delay, Rise Time, and Fall Time Circuit and Voltage Waveforms

background image

TLC193, TLC393

DUAL MICROPOWER LinCMOS

 VOLTAGE COMPARATOR

 

 

SLCS115D – DECEMBER 1986 – REVISED JANUARY 1999

10

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Table of Graphs

FIGURE

VIO

Input offset voltage

Distribution

4

IIB

Input bias current

vs Free-air temperature

5

CMRR

Common-mode rejection ratio

vs Free-air temperature

6

kSVR

Supply-voltage rejection ratio

vs Free-air temperature

7

VOL

Low level output voltage

vs Low-level output current

8

VOL

Low-level output voltage

vs Free-air temperature

9

IOH

Low level output current

vs High-level output voltage

10

IOH

Low-level output current

g

g

vs Free-air temperature

11

IDD

Supply current

vs Supply voltage

12

IDD

Supply current

y

g

vs Free-air temperature

13

tPLH

Low-to-high level output propagation delay time

vs Supply voltage

14

tPHL

High-to-low level output propagation delay time

vs Supply voltage

15

Low-to-high-level output response

Low-to-high level output propagation delay time

16

High-to-low level output response

High-to-low level output propagation delay time

17

tf

Fall time

vs Supply voltage

18

Figure 4

ÉÉ

ÉÉ

ÉÉ

Ç

Ç

Ç

Ç

Ç

Ç

Ç

Ç

Ç

É

É

É

É

É

É

É

É

É

É

ÇÇ

ÇÇ

ÇÇ

ÇÇ

ÇÇ

ÇÇ

ÇÇ

ÇÇ

ÇÇ

ÇÇ

ÇÇ

ÇÇ

ÇÇ

ÇÇ

ÇÇ

ÇÇ

ÇÇ

ÇÇ

ÇÇ

ÇÇ

ÇÇ

É

É

É

É

É

É

É

É

É

Ç

Ç

Ç

Ç

ÉÉ

ÉÉ

É

Ç

Ç

Ç

Ç

Ç

Ç

Ç

Ç

Ç

ÉÉ

ÉÉ

ÉÉ

ÉÉ

ÉÉ

É

É

É

É

É

É

É

Ç

Number of Units

VDD = 5 V

VIC = 2.5 V

TA = 25

°

C

– 5

– 4

– 3

– 2

– 1

0

1

2

3

4

5

VIO – Input Offset Voltage – mV

DISTRIBUTION OF INPUT

OFFSET VOLTAGE

100

90

80

70

60

50

40

30

20

10

0

Ç

ÉÉ

ÉÉ

ÉÉ

ÉÉ

ÉÉ

ÉÉ

Figure 5

I

TA – Free-Air Temperature – 

°

C

IB 

 – Input Bias Current – nA

25

50

75

100

125

10

1

0.1

0.01

0.001

INPUT BIAS CURRENT

vs

FREE-AIR TEMPERATURE

VDD = 5 V

VIC = 2.5 V

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

background image

TLC193, TLC393

DUAL MICROPOWER LinCMOS

 VOLTAGE COMPARATOR

 

 

SLCS115D – DECEMBER 1986 – REVISED JANUARY 1999

11

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 6

CMRR – Common-Mode

TA – Free-Air Temperature – 

°

C

COMMON-MODE REJECTION RATIO

vs

FREE-AIR TEMPERATURE

Rejection Ratio – dB

– 75

– 50

– 25

0

25

50

75

100

125

90

89

88

87

86

85

84

83

82

81

80

VDD = 5 V

Figure 7

– Supply V

oltage Rejection Ratio – dB

TA – Free-Air Temperature – 

°

C

SUPPLY VOLTAGE REJECTION RATIO

vs

FREE-AIR TEMPERATURE

– 75

– 50

– 25

0

25

50

75

100

125

90

89

88

87

86

85

84

83

82

81

80

VDD = 5 V to 10 V

SVR

k

Figure 8

IOL – Low-Level Output Current – mA

0

2

4

6

8

10

12

14

16

18

20

V

OL

 – Low-Level Output V

oltage – V

LOW-LEVEL OUTPUT VOLTAGE

vs

LOW-LEVEL OUTPUT CURRENT

4 V

10 V

VDD = 16 V

5 V

1.5

1.25

1

0.75

0.5

0.25

0

TA = 25

°

C

VDD = 3 V

Figure 9

– 75

– 50

– 25

0

25

50

75

100

125

TA – Free-Air Temperature – 

°

C

LOW-LEVEL OUTPUT VOLTAGE

vs

FREE-AIR TEMPERATURE

V

OL

 – Low-Level Output V

oltage – mV

600

500

400

300

200

100

0

VDD = 5 V

IOL = 6 mA

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

background image

TLC193, TLC393

DUAL MICROPOWER LinCMOS

 VOLTAGE COMPARATOR

 

 

SLCS115D – DECEMBER 1986 – REVISED JANUARY 1999

12

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 10

I OH

 – High-Level Output Current – nA

0

2

4

6

8

10

12

14

16

VOH – High-Level Output Voltage – V

HIGH-LEVEL OUTPUT CURRENT

vs

HIGH-LEVEL OUTPUT VOLTAGE

1000

100

10

1

0.1

TA = 25

°

C

TA = 125

°

C

TA = 85

°

C

TA = 70

°

C

VOH = VDD

Figure 11

TA – Free-Air Temperature – 

°

C

I OH

 – High-Level Output Current – nA

25

50

75

100

125

HIGH-LEVEL OUTPUT CURRENT

vs

FREE-AIR TEMPERATURE

1000

100

10

1

0.1

VDD = VOH = 5 V

Figure 12

SUPPLY CURRENT

vs

SUPPLY VOLTAGE

VDD – Supply Voltage – V

40

35

30

25

20

15

10

5

0

0

2

4

6

8

10

12

14

16

I

 – Supply Current – 

µ

DD

A

TA =  – 55

°

C

TA = 125

°

C

TA =  85

°

C

TA =  – 40

°

C

Outputs Low

No Loads

TA =  25

°

C

50

45

Figure 13

SUPPLY CURRENT

vs

FREE-AIR TEMPERATURE

30

25

20

15

10

5

0

– 75

– 50

– 25

0

25

50

75

100

125

TA – Free-Air Temperature – 

°

C

I DD

– Supply Current –

µ

A

40

35

Outputs High

Outputs Low

VDD = 5 V

No Load

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

background image

TLC193, TLC393

DUAL MICROPOWER LinCMOS

 VOLTAGE COMPARATOR

 

 

SLCS115D – DECEMBER 1986 – REVISED JANUARY 1999

13

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 14

LOW-TO-HIGH-LEVEL

OUTPUT RESPONSE TIME

vs

SUPPLY VOLTAGE

Overdrive = 2 mV

5 mV

10 mV

40 mV

6

5

4

3

2

1

0

0

2

4

6

8

10

12

14

16

VDD – Supply Voltage – V

CL = 15 pF

RL = 5.1 k

 (pullup to VDD)

TA =  25

°

C

t

PLH

– Low-to-High-Level

20 mV

Output Propagation Delay T

ime –

µ

s

Figure 15

HIGH-TO-LOW-LEVEL

OUTPUT RESPONSE TIME

vs

SUPPLY VOLTAGE

3

2.5

2

1.5

1

0.5

0

0

2

4

6

8

10

12

14

16

VDD – Supply Voltage – V

t

PHL

– High-to-Low Level

Output Propagation Delay T

ime –

µ

s

Overdrive = 2 mV

CL = 15 pF

RL = 5.1 k

 (pullup to VDD)

TA =  25

°

C

5

4.5

4

3.5

5 mV

10 mV

20 mV

40 mV

Figure 16

0

1

2

3

4

5

V

O

 – Output

V

oltage – V

V

oltage – mV

Differential Input

LOW-TO-HIGH-LEVEL OUTPUT

PROPAGATION DELAY

FOR VARIOUS INPUT OVERDRIVES

tPLH – Low-to-High-Level Output

Propagation Delay Time – 

µ

s

VDD = 5 V

CL = 15 pF

RL = 5.1 k

 (pullup to VDD)

TA = 25

°

C

5

0

100

0

40 mV

20 mV

10 mV

5 mV

2 mV

Figure 17

40 mV

20 mV

10 mV

5 mV

2 mV

HIGH-TO-LOW-LEVEL OUTPUT

PROPAGATION DELAY

FOR VARIOUS INPUT OVERDRIVES

tPHL – High-to-Low-Level Output

Propagation Delay Time – 

µ

s

V

O

 – Output

V

oltage – V

V

oltage – mV

Differential Input

5

0

100

0

0

1

2

3

4

5

VDD = 5 V

CL = 15 pF

RL = 5.1 k

 (pullup to VDD)

TA = 25

°

C

background image

TLC193, TLC393

DUAL MICROPOWER LinCMOS

 VOLTAGE COMPARATOR

 

 

SLCS115D – DECEMBER 1986 – REVISED JANUARY 1999

14

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

0

2

4

6

8

10

VDD – Supply Voltage – V

t

f

 – Fall T

ime 

–ns

OUTPUT FALL TIME

vs

SUPPLY VOLTAGE

60

50

40

30

20

0

10

50-mV Overdrive

RL = 5.1 k

 (pullup to VDD)

TA = 25

°

C

12

14

16

CL = 100 pF

15 pF

50 pF

Figure 18

APPLICATION INFORMATION

The input should always remain within the supply rails in order to avoid forward biasing the diodes in the electrostatic

discharge (ESD) protection structure. If either input exceeds this range, the device will not be damaged as long as

the input current is limited to less than 5 mA. To maintain the expected output state, the inputs must remain within

the common-mode range. For example, at 25

°

C with V

DD

 = 5 V, both inputs must remain between –0.2 V and 4 V

to assure proper device operation.

To assure reliable operation, the supply should be decoupled with a capacitor (0.1-

µ

F) positioned as close to the

device as possible.

The TLC393 has internal ESD-protection circuits that prevent functional failures at voltages up to 2000 V as tested

under MIL-STD-883C, Method 3015.2; however, care should be exercised in handling these devices, as exposure

to ESD may result in the degradation of the device parametric performance.

Table of Applications

FIGURE

Pulse-width-modulated motor speed controller

19

Enhanced supply supervisor

20

Two-phase nonoverlapping clock generator

21

Micropower switching regulator

28

background image

TLC193, TLC393

DUAL MICROPOWER LinCMOS

 VOLTAGE COMPARATOR

 

 

SLCS115D – DECEMBER 1986 – REVISED JANUARY 1999

15

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

APPLICATION INFORMATION

C1

0.01 

µ

F

(see Note B)

5 V

1/2 TLC393

Motor Speed Control

Potentiometer

+

+

10 k

100 k

10 k

10 k

1/2 TLC393

10 k

5 V

DIR

EN

SN75603

Half-H Driver

12 V

Motor

DIR

EN

12 V

Direction

Control

S1

SPDT

5 V

5 V

C2

(see Note A)

5.1 k

5.1 k

12 V

SN75604

Half-H Driver

NOTES: A. The recommended minimum capacitance is 10 

µ

F to eliminate common ground switching noise.

B. Adjust C1 for change in oscillator frequency.

Figure 19. Pulse-Width-Modulated Motor Speed Controller

background image

TLC193, TLC393

DUAL MICROPOWER LinCMOS

 VOLTAGE COMPARATOR

 

 

SLCS115D – DECEMBER 1986 – REVISED JANUARY 1999

16

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

APPLICATION INFORMATION

1/2 TLC393

To 

µ

P Interrupt

Early Power Fail

+

+

1 k

3.3 k

CT

(see Note B)

1/2 TLC393

10 k

5 V

5 V

12-V

Sense

R2

R1

VUNREG

(see Note A)

µ

F

12 V

RESIN

REF

CT

GND

RESET

SENSE

VCC

To 

µ

P

Reset

Monitors 5-VDC Rail

Monitors 12-VDC Rail

Early Power Fail Warning

TL7705A

2.5 V

5.1 k

5.1 k

12 V

NOTES: A.

V

UNREG

+

2.5

(R1 +R2)

R2

B. The value of CT determines the time delay of reset.

Figure 20. Enhanced Supply Supervisor

background image

TLC193, TLC393

DUAL MICROPOWER LinCMOS

 VOLTAGE COMPARATOR

 

 

SLCS115D – DECEMBER 1986 – REVISED JANUARY 1999

17

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

APPLICATION INFORMATION

+

22 k

C1

0.01 

µ

F

(see Note A)

1/2 TLC393

R1

100 

(see Note B)

100 k

1/2 TLC393

2OUT

+

+

1/2 TLC393

100 k

100 k

12 V

1OUT

12 V

R2

5 k

(see Note C)

R3

100 k

(see Note B)

2OUT

1OUT

12 V

5.1 k

12 V

5.1 k

12 V

5.1 k

NOTES: A. Adjust C1 for a change in oscillator frequency where:

      1/f = 1.85(100 k

)C1

B. Adjust R1 and R3 to change duty cycle

C. Adjust R2 to change deadtime

Figure 21. Two-Phase Nonoverlapping Clock Generator

background image

TLC193, TLC393

DUAL MICROPOWER LinCMOS

 VOLTAGE COMPARATOR

 

 

SLCS115D – DECEMBER 1986 – REVISED JANUARY 1999

18

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

MECHANICAL DATA

D (R-PDSO-G**)    

PLASTIC SMALL-OUTLINE PACKAGE

14 PIN SHOWN

4040047 / D 10/96

0.228 (5,80)

0.244 (6,20)

0.069 (1,75) MAX

0.010 (0,25)

0.004 (0,10)

1

14

0.014 (0,35)

0.020 (0,51)

A

0.157 (4,00)

0.150 (3,81)

7

8

0.044 (1,12)

0.016 (0,40)

Seating Plane

0.010 (0,25)

PINS **

0.008 (0,20) NOM

A  MIN

A  MAX

DIM

Gage Plane

0.189

(4,80)

(5,00)

0.197

8

(8,55)

(8,75)

0.337

14

0.344

(9,80)

16

0.394

(10,00)

0.386

0.004 (0,10)

M

0.010 (0,25)

0.050 (1,27)

0

°

– 8

°

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-012

background image

TLC193, TLC393

DUAL MICROPOWER LinCMOS

 VOLTAGE COMPARATOR

 

 

SLCS115D – DECEMBER 1986 – REVISED JANUARY 1999

19

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

MECHANICAL DATA

FK (S-CQCC-N**)     

LEADLESS CERAMIC CHIP CARRIER

4040140 / D 10/96

28 TERMINAL SHOWN

B

0.358

(9,09)

MAX

(11,63)

0.560

(14,22)

0.560

0.458

0.858

(21,8)

1.063

(27,0)

(14,22)

A

NO. OF

MIN

MAX

0.358

0.660

0.761

0.458

0.342

(8,69)

MIN

(11,23)

(16,26)

0.640

0.739

0.442

(9,09)

(11,63)

(16,76)

0.962

1.165

(23,83)

0.938

(28,99)

1.141

(24,43)

(29,59)

(19,32)

(18,78)

**

20

28

52

44

68

84

0.020 (0,51)

TERMINALS

0.080 (2,03)

0.064 (1,63)

(7,80)

0.307

(10,31)

0.406

(12,58)

0.495

(12,58)

0.495

(21,6)

0.850

(26,6)

1.047

0.045 (1,14)

0.045 (1,14)

0.035 (0,89)

0.035 (0,89)

0.010 (0,25)

12

13

14

15

16

18

17

11

10

8

9

7

5

4

3

2

0.020 (0,51)

0.010 (0,25)

6

1

28

26

27

19

21

B SQ

A SQ

22

23

24

25

20

0.055 (1,40)

0.045 (1,14)

0.028 (0,71)

0.022 (0,54)

0.050 (1,27)

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. This package can be hermetically sealed with a metal lid.

D. The terminals are gold plated.

E. Falls within JEDEC MS-004

background image

TLC193, TLC393

DUAL MICROPOWER LinCMOS

 VOLTAGE COMPARATOR

 

 

SLCS115D – DECEMBER 1986 – REVISED JANUARY 1999

20

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

MECHANICAL DATA

JG (R-GDIP-T8)  

CERAMIC DUAL-IN-LINE PACKAGE

0.310 (7,87)

0.290 (7,37)

0.014 (0,36)

0.008 (0,20)

Seating Plane

4040107/C 08/96

5

4

0.065 (1,65)

0.045 (1,14)

8

1

0.020 (0,51) MIN

0.400 (10,20)

0.355 (9,00)

0.015 (0,38)

0.023 (0,58)

0.063 (1,60)

0.015 (0,38)

0.200 (5,08) MAX

0.130 (3,30) MIN

0.245 (6,22)

0.280 (7,11)

0.100 (2,54)

0

°

–15

°

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. This package can be hermetically sealed with a ceramic lid using glass frit.

D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.

E. Falls within MIL-STD-1835 GDIP1-T8

background image

TLC193, TLC393

DUAL MICROPOWER LinCMOS

 VOLTAGE COMPARATOR

 

 

SLCS115D – DECEMBER 1986 – REVISED JANUARY 1999

21

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

MECHANICAL DATA

P (R-PDIP-T8)  

PLASTIC DUAL-IN-LINE PACKAGE

4040082 / B 03/95

0.310 (7,87)

0.290 (7,37)

0.010 (0,25) NOM

0.400 (10,60)

0.355 (9,02)

5

8

4

1

0.020 (0,51) MIN

0.070 (1,78) MAX

0.240 (6,10)

0.260 (6,60)

0.200 (5,08) MAX

0.125 (3,18) MIN

0.015 (0,38)

0.021 (0,53)

Seating Plane

M

0.010 (0,25)

0.100 (2,54)

0

°

– 15

°

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Falls within JEDEC MS-001

background image

TLC193, TLC393

DUAL MICROPOWER LinCMOS

 VOLTAGE COMPARATOR

 

 

SLCS115D – DECEMBER 1986 – REVISED JANUARY 1999

22

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

MECHANICAL DATA

PW (R-PDSO-G**)   

PLASTIC SMALL-OUTLINE PACKAGE

4040064 / E 08/96

14 PIN SHOWN

Seating Plane

1,20 MAX

1

A

7

14

0,19

4,50

4,30

8

6,20

6,60

0,30

0,75

0,50

0,25

Gage Plane

0,15 NOM

0,65

M

0,10

0

°

– 8

°

0,10

PINS **

A  MIN

A  MAX

DIM

2,90

3,10

8

4,90

5,10

14

6,60

6,40

4,90

5,10

16

7,70

20

7,90

24

9,60

9,80

28

0,15

0,05

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

background image

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue

any product or service without notice, and advise customers to obtain the latest version of relevant information

to verify, before placing orders, that information being relied on is current and complete. All products are sold

subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those

pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in

accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent

TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily

performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF

DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL

APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR

WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER

CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO

BE FULLY AT THE CUSTOMER’S RISK.

In order to minimize risks associated with the customer’s applications, adequate design and operating

safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent

that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other

intellectual property right of TI covering or relating to any combination, machine, or process in which such

semiconductor products or services might be or are used. TI’s publication of information regarding any third

party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

Copyright 

©

 1999, Texas Instruments Incorporated