background image

TLV2432, TLV2432A, TLV2434, TLV2434A

Advanced LinCMOS

 RAIL-TO-RAIL OUTPUT

WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS

SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999

1

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

D

Output Swing Includes Both Supply Rails

D

Extended Common-Mode Input Voltage

Range . . . 0  V  to  4.5 V (Min) with 5-V Single

Supply

D

No Phase Inversion

D

Low Noise . . . 18 nV/

Hz Typ at f = 1 kHz

D

Low Input Offset Voltage 

950 

µ

V Max at T

A

 = 25

°

C (TLV243xA)

D

Low Input Bias Current . . . 1  pA  Typ

D

Very Low Supply Current . . . 125 

µ

A Per

Channel Max

D

600-

 Output Drive

D

Macromodel Included

D

Available in Q-Temp Automotive 

HighRel Automotive Applications

Configuration Control / Print Support

Qualification to Automotive Standards

     

description

The TLV243x and TLV243xA are low-voltage

operational amplifier from Texas Instruments. The

common-mode input voltage range for each

device is extended over the typical CMOS

amplifiers making them suitable for a wide range

of applications. In addition, these devices do not

phase invert when the common-mode input is

driven to the supply rails. This satisfies most

design requirements without paying a premium

for rail-to-rail input performance. They also exhibit

rail-to-rail output performance for increased

dynamic range in single- or split-supply applica-

tions. This family is fully characterized at 3-V and

5-V supplies and is optimized for low-voltage

operation. The TLV243x only requires 100 

µ

A

(typ) of supply current per channel, making it ideal

for battery-powered applications. The TLV243x

also has increased output drive over previous

rail-to-rail operational amplifiers and can drive

600-

 loads for telecom applications.

The other members in the TLV243x family are the high-power, TLV244x, and micro-power, TLV2422, versions.

The TLV243x, exhibiting high input impedance and low noise, is excellent for small-signal conditioning for

high-impedance sources, such as piezoelectric transducers. Because of the micropower dissipation levels and

low-voltage operation, these devices work well in hand-held monitoring and remote-sensing applications. In

addition, the rail-to-rail output feature with single- or split-supplies makes this family a great choice when

interfacing with analog-to-digital converters (ADCs). For precision applications, the TLV243xA is available and

has a maximum input offset voltage of 950 

µ

V.

If the design requires single operational amplifiers, see the TI TLV2211/21/31. This is a family of rail-to-rail output

operational amplifiers in the SOT-23 package. Their small size and low power consumption, make them ideal

for high density, battery-powered equipment.

Copyright 

©

 1999, Texas Instruments Incorporated

PRODUCTION DATA information is current as of publication date.

Products conform to specifications per the terms of Texas Instruments

standard warranty. Production processing does not necessarily include

testing of all parameters.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of

Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Advanced LinCMOS is a trademark of Texas Instruments Incorporated.

Figure 1

TA = 125

°

C

TA = 85

°

C

TA = 25

°

C

TA =–40

°

C

VDD = 5 V

2

1

0

0

4

8

12

3

4

5

16

20

VOH – High-Level Output V

oltage – V

HIGH-LEVEL OUTPUT VOLTAGE

vs

HIGH-LEVEL OUTPUT CURRENT

IOH – High-Level Output Current –

m

A

ÁÁ

ÁÁ

ÁÁ

V

OH

On products compliant to MIL-PRF-38535, all parameters are tested

unless otherwise noted. On all other products, production

processing does not necessarily include testing of all parameters.

background image

TLV2432, TLV2432A, TLV2434, TLV2434A

Advanced LinCMOS

 RAIL-TO-RAIL OUTPUT

WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS

SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999

2

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TLV2432 and TLV2432A AVAILABLE OPTIONS

PACKAGED DEVICES

TA

VIOmax

AT 25

°

C

SMALL

OUTLINE

(D)

CHIP CARRIER

(FK)

CERAMIC DIP

(JG)

TSSOP

(PW)

CERAMIC FLAT

PACK

(U)

0

°

C to 70

°

C

2.5 mV

TLV2432CD

TLV2432CPW

40

°

C to 85

°

C

950 

µ

V

TLV2432AID

TLV2432AIPW

– 40

°

C to 85

°

C

µ

2.5 mV

TLV2432ID

40

°

C to 125

°

C

950 

µ

V

TLV2432AQD

– 40

°

C to 125

°

C

µ

2.5 mV

TLV2432QD

– 55

°

C to 125

°

C

950 

µ

V

TLV2432AMFK

TLV2432AMJG

TLV2432AMU

– 55

°

C to 125

°

C

µ

2.5 mV

TLV2432MFK

TLV2432MJG

TLV2432MU

The D packages are available taped and reeled. Add R suffix to device type (e.g., TLV2432CDR). The PW package is available only left-end taped

and reeled.

TLV2434 AVAILABLE OPTIONS

PACKAGED DEVICES

TA

VIOmax AT 25

°

C

SMALL

OUTLINE

(D)

TSSOP

(PW)

0

°

C to 70

°

C

2.5 mV

TLV2434CD

TLV2434CPW

– 40

°

C to 125

°

C

950 

µ

V

TLV2434AID

TLV2434AIPW

– 40

°

C to 125

°

C

µ

2.5 mV

TLV2434ID

TLV2434IPW

The D packages are available taped and reeled. Add R suffix to device type (e.g., TLV2434CDR). The

PW package is available only left-end taped and reeled.

1

2

3

5

6

7

14

13

12

11

10

9

8

1OUT

1IN –

1IN+

V

DD

+

2IN+

2IN –

2OUT

4OUT

4IN –

4IN+

V

DD–

/GND

3IN+

3IN –

3OUT

(TOP VIEW)

TLV2434

D OR PW PACKAGE

1

2

3

4

8

7

6

5

1OUT

1IN–

1IN +

V

DD –

/ GND

V

DD +

2OUT

2IN –

2IN +

NC

V

DD

+

2OUT

2IN –

2IN +

NC

1OUT

1IN –

1IN +

V

DD –

/GND

  1

2

3

5

10

9

8

7

6

TLV2432

U PACKAGE

(TOP VIEW)

3

2

1 20 19

9 10 11 12 13

4

5

6

7

8

18

17

16

15

14

NC

2OUT

NC

2IN –

NC

NC

1IN –

NC

1IN +

NC

NC

1OUT

NC

2IN+

NC

NC

NC

NC

V

DD+

V

DD–

TLV2432

FK PACKAGE

(TOP VIEW)

/GND

1

2

3

4

8

7

6

5

1OUT

1IN –

1IN +

V

DD –

/GND

V

DD +

2OUT

2IN –

2IN +

NC – No internal connection

TLV2432

PW PACKAGE

(TOP VIEW)

TLV2432

D OR JG PACKAGE

(TOP VIEW)

background image

TL

V2432, TL

V2432A, TL

V2434, TL

V2434A

RAIL-T

O-RAIL

 OUTPUT

WIDE-INPUT

-VOL

TAGE OPERA

TIONAL

 AMPLIFIERS

SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999

Advanced LinCMOS

POST

 OFFICE BOX 655303     DALLAS, 

TEXAS 

75265

3

equivalent schematic (each amplifier)

Q27

R9

Q29

Q22

Q23

Q26

Q25

Q24

Q31

Q34

Q36

Q32

Q33

Q35

Q37

D1

Q30

R10

VB3

VB2

VB4

VDD+

VDD–/GND

OUT

R8

R1

R2

Q2

Q5

Q1

Q4

Q3

Q12

Q11

Q10

Q6

Q7

Q8

Q9

VB3

VB4

C1

C2

C3

R5

R6

Q13

Q15

Q16

Q17

Q14

Q19

Q18

Q20

Q21

R7

R3

R4

VB2

IN+

IN–

VB1

COMPONENT

COUNT

Transistors

Diodes

Resistors

Capacitors

69

5

26

6

background image

TLV2432, TLV2432A, TLV2434, TLV2434A

Advanced LinCMOS

 RAIL-TO-RAIL OUTPUT

WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS

SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999

4

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V

DD

 (see Note 1) 

12 V

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Differential input voltage, V

ID

 (see Note 2) 

±

V

DD

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Input voltage, V

I

 (any input, see Note 1): C and I suffix 

– 0.3 V to V

DD

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Input current, I

I

 (each input) 

±

5 mA

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Output current, I

O

 

±

50 mA

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Total current into V

DD +

 

±

50 mA

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Total current out of V

DD –

 

±

50 mA

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Duration of short-circuit current at (or below) 25

°

C (see Note 3) 

unlimited

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Continuous total dissipation 

See Dissipation Rating Table

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Operating free-air temperature range, T

A

: C suffix 

0

°

C to 70

°

C

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

I suffix (dual) 

– 40

°

C to 85

°

C

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

I suffix (quad) 

– 40

°

C to 125

°

C

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Q suffix 

– 40

°

C to 125

°

C

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

M suffix 

– 55

°

C to 125

°

C

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Storage temperature range, T

stg

  – 65

°

C to 150

°

C

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds 

260

°

C

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and

functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not

implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES:

1. All voltage values, except differential voltages, are with respect to the midpoint between VDD+  and VDD – .

2. Differential voltages are at IN+ with respect to IN –. Excessive current flows if input is brought below VDD – – 0.3 V.

3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum

dissipation rating is not exceeded.

DISSIPATION RATING TABLE

PACKAGE

TA 

 25

°

C

DERATING FACTOR

TA = 70

°

C

TA = 85

°

C

TA = 125

°

C

PACKAGE

A

POWER RATING

ABOVE TA = 25

°

C

A

POWER RATING

A

POWER RATING

A

POWER RATING

D (8)

D (14)

FK

JG

PW (8)

PW (14)

U

725 mW

1022 mW

1375 mW

1050 mW

525 mW

720 mW

675 mW

5.8 mW/

°

C

7.6 mW/

°

C

11.0 mW/

°

C

8.4 mW/

°

C

4.2 mW/

°

C

5.6 mW/

°

C

5.4 mW/

°

C

464 mW

900 mW

880 mW

672 mW

336 mW

634 mW

432 mW

377 mW

777 mW

715 mW

546 mW

273 mW

547 mW

350 mW

145 mW

450 mW

275 mW

210 mW

105 mW

317 mW

135 mW

recommended operating conditions

C SUFFIX

I SUFFIX

Q SUFFIX

M SUFFIX

UNIT

MIN

MAX

MIN

MAX

MIN

MAX

MIN

MAX

UNIT

Supply voltage, VDD

2.7

10

2.7

10

2.7

10

2.7

10

V

Input voltage range, VI

VDD –

VDD + – 0.8 VDD –

VDD + – 0.8 VDD –

VDD + – 0.8 VDD –

VDD + – 0.8

V

Common-mode input voltage,

VIC

VDD –

VDD + – 1.3 VDD –

VDD + – 1.3 VDD –

VDD + – 1.3 VDD –

VDD + – 1.3

V

Operating free-air temperature,

TA

0

70

– 40

125

– 40

125

– 55

125

°

C

background image

TLV2432, TLV2432A, TLV2434, TLV2434A

Advanced LinCMOS

 RAIL-TO-RAIL OUTPUT

WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS

SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999

5

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

electrical characteristics at specified free-air temperature, V

DD

 = 3 V (unless otherwise noted)

PARAMETER

TEST CONDITIONS

T †

TLV243x

UNIT

PARAMETER

TEST CONDITIONS

TA†

MIN

TYP

MAX

UNIT

VIC = 0

TLV243xC,

25

°

C

300

2000

VIO

Input offset voltage

VIC = 0,

VO = 0, 

,

TLV243xI

Full range

2500

µ

V

VIO

Input offset voltage

O

,

VDD

±

 = 

±

1.5 V,

R

50

TLV243xAI

25

°

C

300

950

µ

V

RS = 50 

TLV243xAI

Full range

1500

α

VIO

Temperature coefficient of input offset voltage

25

°

C

2

µ

V/

°

C

α

VIO

Temperature coefficient of input offset voltage

to 70

°

C

2

µ

V/

°

C

Input offset voltage long-term drift

(see Note 4)

VIC = 0,

VDD

±

=

±

1.5 V,

25

°

C

0.003

µ

V/mo

IIO

Input offset current

VIC = 0,

VO = 0,

VDD

±

 = 

±

1.5 V,

RS = 50 

25

°

C

0.5

pA

IIO

Input offset current

Full range

150

pA

IIB

Input bias current

25

°

C

1

pA

IIB

Input bias current

Full range

150

pA

VICR

Common mode input voltage range

|VIO|

5 mV

RS = 50

25

°

C

0

to

2.5

–0.25

to

2.75

V

VICR

Common-mode input voltage range

|VIO| 

 5 mV,

RS = 50 

Full range

0

to

2.2

V

IOH = – 100 

µ

A

25

°

C

2.98

VOH

High-level output voltage

IOH = 3 mA

25

°

C

2.5

V

IOH = – 3 mA

Full range

2.25

VIC = 1.5 V,

IOL =  100 

µ

A

25

°

C

0.02

VOL

Low-level output voltage

VIC = 1 5 V

IOL = 3

m

A

25

°

C

0.83

V

VIC = 1.5 V,

IOL =  3 

m

A

Full range

1

V

2 5 V

R

2 k

25

°

C

1.5

2.5

AVD

Large-signal differential voltage amplification

VIC = 2.5 V,

VO = 1 V to 2 V

RL = 2 k

Full range

1

V/mV

VD

g

g

g

VO = 1 V to 2 V

RL = 1 M

25

°

C

750

ri(d)

Differential input resistance

25

°

C

1000

G

ri(c)

Common-mode input resistance

25

°

C

1000

G

ci(c)

Common-mode input capacitance

f = 10 kHz

25

°

C

8

pF

zo

Closed-loop output impedance

f = 100 kHz,

AV = 10

25

°

C

130

CMRR

Common mode rejection ratio

VIC = 0 to 2.5 V, VO = 1.5 V,

25

°

C

70

83

dB

CMRR

Common-mode rejection ratio

IC

,

O

,

RS = 50

Full range

70

dB

kSVR

Supply voltage rejection ratio (

VDD/

VIO)

VDD = 2.7 V to 8 V,

25

°

C

80

95

dB

kSVR

Supply-voltage rejection ratio (

VDD/

VIO)

DD

,

VIC = VDD /2,

No load

Full range

80

dB

IDD

Supply current (per channel)

VO = 1 5 V

No load

25

°

C

98

125

µ

A

IDD

Supply current (per channel)

VO = 1.5 V,

No load

Full range

125

µ

A

† Full range for the C suffix is 0

°

C to 70

°

C. Full range for the dual I suffix is – 40

°

C to 85

°

C. Full range for the quad I suffix is – 40

°

C to 125

°

C.

‡ Referenced to 2.5 V

NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150

°

C extrapolated

to TA = 25

°

C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

background image

TLV2432, TLV2432A, TLV2434, TLV2434A

Advanced LinCMOS

 RAIL-TO-RAIL OUTPUT

WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS

SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999

6

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

operating characteristics at specified free-air temperature, V

DD

 = 3 V

PARAMETER

TEST CONDITIONS

T †

TLV243x

UNIT

PARAMETER

TEST CONDITIONS

TA†

MIN

TYP

MAX

UNIT

V

1 V to 2 V

R

2 k

25

°

C

0.15

0.25

SR

Slew rate at unity gain

VO = 1 V to 2 V,

CL = 100 pF‡

RL = 2 k

‡,

Full

range

0.1

V/

µ

s

V

Equivalent input noise voltage

f = 10 Hz

25

°

C

120

nV/

Hz

Vn

Equivalent input noise voltage

f = 1 kHz

25

°

C

22

nV/

Hz

VN(PP)

Peak to peak equivalent input noise voltage

f = 0.1 Hz to 1 Hz

25

°

C

2.7

µ

V

VN(PP)

Peak-to-peak equivalent input noise voltage

f = 0.1 Hz to 10 Hz

25

°

C

4

µ

V

In

Equivalent input noise current

25

°

C

0.6

fA

Hz

THD + N

Total harmonic distortion plus noise

VO = 0.5 V to 2.5 V,

f

1 kHz

AV = 1

25

°

C

0.065%

THD + N

Total harmonic distortion plus noise

f = 1  kHz,

RL = 2 k

AV = 10

25

°

C

0.5%

Gain-bandwidth product

f = 10  kHz, 

CL = 100 pF‡

RL = 2 k

‡,

25

°

C

0.5

MHz

BOM

Maximum output-swing bandwidth

VO(PP) = 1 V, 

RL = 2 k

‡,

AV = 1, 

CL = 100 pF‡

25

°

C

220

kHz

AV = – 1,

To 0 1%

6 4

t

Settling time

AV =  1,

Step = 0.5 V to 2.5 V,

To  0.1%

25

°

C

6.4

µ

s

ts

Settling time

,

RL = 2 k

‡,

To 0 01%

25

°

C

14 1

µ

s

L

CL = 100 pF‡

To  0.01%

14.1

φ

m

Phase margin at unity gain

RL = 2 k

‡,

CL = 100 pF‡

25

°

C

62

°

Gain margin

RL = 2 k

‡,

CL = 100 pF‡

25

°

C

11

dB

† Full range for the C suffix is 0

°

C to 70

°

C. Full range for the dual I suffix is – 40

°

C to 85

°

C. Full range for the quad I suffix is – 40

°

C to 125

°

C.

‡ Referenced to 2.5 V

background image

TLV2432, TLV2432A, TLV2434, TLV2434A

Advanced LinCMOS

 RAIL-TO-RAIL OUTPUT

WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS

SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999

7

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

electrical characteristics at specified free-air temperature, V

DD

 = 3 V (unless otherwise noted)

PARAMETER

TEST CONDITIONS

TA†

TLV243xQ,

TLV243xM

UNIT

A

MIN

TYP

MAX

VIC = 0

TLV243xQ,

25

°

C

300

2000

VIO

Input offset voltage

VIC = 0,

VO = 0, 

,

TLV243xM

Full range

2500

µ

V

VIO

Input offset voltage

O

,

VDD

±

 = 

±

1.5 V,

R

50

TLV243xAQ,

25

°

C

300

950

µ

V

RS = 50 

,

TLV243xAM

Full range

2000

α

VIO

Temperature coefficient of input offset voltage

25

°

C

2

µ

V/

°

C

α

VIO

Temperature coefficient of input offset voltage

to 70

°

C

2

µ

V/

°

C

Input offset voltage long-term drift

(see Note 4)

VIC = 0,

VDD

±

=

±

1.5 V,

25

°

C

0.003

µ

V/mo

IIO

Input offset current

VIC = 0,

VO = 0,

VDD

±

 = 

±

1.5 V,

RS = 50 

25

°

C

0.5

pA

IIO

Input offset current

Full range

150

pA

IIB

Input bias current

25

°

C

1

pA

IIB

Input bias current

Full range

300

pA

VICR

Common mode input voltage range

|VIO|

5 mV

RS = 50

25

°

C

0

to

2.5

–0.25

to

2.75

V

VICR

Common-mode input voltage range

|VIO| 

 5 mV,

RS = 50 

Full range

0

to

2.2

V

IOH = – 100 

µ

A

25

°

C

2.98

VOH

High-level output voltage

IOH = 3 mA

25

°

C

2.5

V

IOH = – 3 mA

Full range

2.25

VIC = 1.5 V,

IOL =  100 

µ

A

25

°

C

0.02

VOL

Low-level output voltage

VIC = 1 5 V

IOL = 3

m

A

25

°

C

0.83

V

VIC = 1.5 V,

IOL =  3 

m

A

Full range

1

V

2 5 V

R

2 k

25

°

C

1.5

2.5

AVD

Large-signal differential voltage amplification

VIC = 2.5 V,

VO = 1 V to 2 V

RL = 2 k

Full range

0.5

V/mV

VD

g

g

g

VO = 1 V to 2 V

RL = 1 M

25

°

C

750

ri(d)

Differential input resistance

25

°

C

1000

G

ri(c)

Common-mode input resistance

25

°

C

1000

G

ci(c)

Common-mode input capacitance

f = 10 kHz

25

°

C

8

pF

zo

Closed-loop output impedance

f = 100 kHz,

AV = 10

25

°

C

130

CMRR

Common mode rejection ratio

VIC = 0 to 2.5 V, VO = 1.5 V,

25

°

C

70

83

dB

CMRR

Common-mode rejection ratio

IC

,

O

,

RS = 50

Full range

70

dB

kSVR

Supply voltage rejection ratio (

VDD/

VIO)

VDD = 2.7 V to 8 V,

25

°

C

80

95

dB

kSVR

Supply-voltage rejection ratio (

VDD/

VIO)

DD

,

VIC = VDD /2,

No load

Full range

80

dB

IDD

Supply current

VO = 1 5 V

No load

25

°

C

195

250

µ

A

IDD

Supply current

VO = 1.5 V,

No load

Full range

260

µ

A

† Full range is – 40

°

C to 125

°

C for Q level part, – 55

°

C to 125

°

C for M level part.

‡ Referenced to 2.5 V

NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150

°

C extrapolated

to TA = 25

°

C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

background image

TLV2432, TLV2432A, TLV2434, TLV2434A

Advanced LinCMOS

 RAIL-TO-RAIL OUTPUT

WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS

SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999

8

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

operating characteristics at specified free-air temperature, V

DD

 = 3 V

PARAMETER

TEST CONDITIONS

TA†

TLV243xQ,

TLV243xM,

TLV243xAQ,

TLV243xAM

UNIT

MIN

TYP

MAX

V

1 V to 2 V

R

2 k

25

°

C

0.15

0.25

SR

Slew rate at unity gain

VO = 1 V to 2 V,

CL = 100 pF‡

RL = 2 k

‡,

Full

range

0.1

V/

µ

s

V

Equivalent input noise voltage

f = 10 Hz

25

°

C

120

nV/

Hz

Vn

Equivalent input noise voltage

f = 1 kHz

25

°

C

22

nV/

Hz

VN(PP)

Peak to peak equivalent input noise voltage

f = 0.1 Hz to 1 Hz

25

°

C

2.7

µ

V

VN(PP)

Peak-to-peak equivalent input noise voltage

f = 0.1 Hz to 10 Hz

25

°

C

4

µ

V

In

Equivalent input noise current

25

°

C

0.6

fA

Hz

THD + N

Total harmonic distortion plus noise

VO = 0.5 V to 2.5 V,

f

1 kHz

AV = 1

25

°

C

0.065%

THD + N

Total harmonic distortion plus noise

f = 1  kHz,

RL = 2 k

AV = 10

25

°

C

0.5%

Gain-bandwidth product

f = 10  kHz, 

CL = 100 pF‡

RL = 2 k

‡,

25

°

C

0.5

MHz

BOM

Maximum output-swing bandwidth

VO(PP) = 1 V, 

RL = 2 k

‡,

AV = 1, 

CL = 100 pF‡

25

°

C

220

kHz

AV = – 1,

To 0 1%

6 4

t

Settling time

AV =  1,

Step = 0.5 V to 2.5 V,

To  0.1%

25

°

C

6.4

µ

s

ts

Settling time

,

RL = 2 k

‡,

To 0 01%

25

°

C

14 1

µ

s

L

CL = 100 pF‡

To  0.01%

14.1

φ

m

Phase margin at unity gain

RL = 2 k

‡,

CL = 100 pF‡

25

°

C

62

°

Gain margin

RL = 2 k

‡,

CL = 100 pF‡

25

°

C

11

dB

† Full range is – 40

°

C to 125

°

C for Q level part, – 55

°

C to 125

°

C for M level part.

‡ Referenced to 2.5 V

background image

TLV2432, TLV2432A, TLV2434, TLV2434A

Advanced LinCMOS

 RAIL-TO-RAIL OUTPUT

WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS

SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999

9

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

electrical characteristics at specified free-air temperature, V

DD

 = 5 V (unless otherwise noted)

PARAMETER

TEST CONDITIONS

T †

TLV243x

UNIT

PARAMETER

TEST CONDITIONS

TA†

MIN

TYP

MAX

UNIT

VIC = 0

TLV243x

25

°

C

300

2000

VIO

Input offset voltage

VIC = 0,

VO = 0, 

TLV243x

Full range

2500

µ

V

VIO

Input offset voltage

O

,

VDD

±

 = 

±

2.5 V,

R

50

TLV243xA

25

°

C

300

950

µ

V

RS = 50 

TLV243xA

Full range

1500

α

VIO

Temperature coefficient of input offset voltage

25

°

C

2

µ

V/

°

C

α

VIO

Temperature coefficient of input offset voltage

to 70

°

C

2

µ

V/

°

C

Input offset voltage long-term drift 

(see Note 4)

VIC = 0,

VDD

±

=

±

2.5 V,

25

°

C

0.003

µ

V/mo

IIO

Input offset current

VIC = 0,

VO = 0,

VDD

±

 = 

±

2.5 V,

RS = 50 

25

°

C

0.5

pA

IIO

Input offset current

Full range

150

pA

IIB

Input bias current

25

°

C

1

pA

IIB

Input bias current

Full range

150

pA

VICR

Common mode input voltage range

|VIO|

5 mV

RS = 50

25

°

C

0

to

4.5

–0.25

to

4.75

V

VICR

Common-mode input voltage range

|VIO| 

 5 mV,

RS = 50 

Full range

0

to

4.2

V

IOH = – 100 

µ

A

25

°

C

4.97

VOH

High-level output voltage

IOH = 5 mA

25

°

C

4

4.35

V

IOH = – 5 mA

Full range

4

VIC = 2.5 V,

IOL =  100 

µ

A

25

°

C

0.01

VOL

Low-level output voltage

VIC = 2 5 V

IOL = 5

m

A

25

°

C

0.8

V

VIC = 2.5 V,

IOL = 5 

m

A

Full range

1.25

V

2 5 V

R

2 k

25

°

C

2.5

3.8

AVD

Large-signal differential voltage amplification

VIC = 2.5 V,

VO = 1 V to 4 V

RL = 2 k

Full range

1.5

V/mV

VD

g

g

g

VO = 1 V to 4 V

RL = 1 M

25

°

C

950

ri(d)

Differential input resistance

25

°

C

1000

G

ri(c)

Common-mode input resistance

25

°

C

1000

G

ci(c)

Common-mode input capacitance

f = 10 kHz

25

°

C

8

pF

zo

Closed-loop output impedance

f = 100 kHz,

AV = 10

25

°

C

130

CMRR

Common mode rejection ratio

VIC = 0 to 4.5 V, VO = 2.5 V,

25

°

C

70

90

dB

CMRR

Common-mode rejection ratio

IC

,

O

,

RS = 50

Full range

70

dB

kSVR

Supply voltage rejection ratio (

VDD/

VIO)

VDD =  4.4 V to 8 V,

25

°

C

80

95

dB

kSVR

Supply-voltage rejection ratio (

VDD/

VIO)

DD

,

VIC = VDD /2,

No load

Full range

80

dB

IDD

Supply current (per channel)

VO = 2 5 V

No load

25

°

C

100

125

µ

A

IDD

Supply current (per channel)

VO = 2.5 V,

No load

Full range

125

µ

A

† Full range for the C suffix is 0

°

C to 70

°

C. Full range for the dual I suffix is – 40

°

C to 85

°

C. Full range for the quad I suffix is – 40

°

C to 125

°

C.

‡ Referenced to 2.5 V

NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150

°

C extrapolated

to TA = 25

°

C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

background image

TLV2432, TLV2432A, TLV2434, TLV2434A

Advanced LinCMOS

 RAIL-TO-RAIL OUTPUT

WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS

SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999

10

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

operating characteristics at specified free-air temperature, V

DD

 = 5 V

PARAMETER

TEST CONDITIONS

T †

TLV243x

UNIT

PARAMETER

TEST CONDITIONS

TA†

MIN

TYP

MAX

UNIT

VO 1 5 V to 3 5 V

RL 2 k

25

°

C

0.15

0.25

SR

Slew rate at unity gain

VO = 1.5 V to 3.5 V,

CL = 100 pF‡

RL = 2 k

‡,

Full

0 1

V/

µ

s

CL = 100  F‡

range

0.1

V

Equivalent input noise voltage

f = 10 Hz

25

°

C

100

nV/

Hz

Vn

Equivalent input noise voltage

f = 1 kHz

25

°

C

18

nV/

Hz

VN(PP)

Peak to peak equivalent input noise voltage

f = 0.1 Hz to 1 Hz

25

°

C

1.9

µ

V

VN(PP)

Peak-to-peak equivalent input noise voltage

f = 0.1 Hz to 10 Hz

25

°

C

2.8

µ

V

In

Equivalent input noise current

25

°

C

0.6

fA

Hz

THD + N

Total harmonic distortion plus noise

VO = 1.5 V to 3.5 V,

f

1 kHz

AV = 1

25

°

C

0.045%

THD + N

Total harmonic distortion plus noise

f = 1  kHz,

RL = 2 k

AV = 10

25

°

C

0.4%

Gain-bandwidth product

f = 10  kHz, 

CL = 100 pF‡

RL =2 k

‡,

25

°

C

0.55

MHz

BOM

Maximum output-swing bandwidth

VO(PP) = 2 V, 

RL = 2 k

‡,

AV = 1, 

CL = 100 pF‡

25

°

C

100

kHz

AV = – 1,

To 0 1%

6 4

t

Settling time

AV =  1,

Step = 1.5 V to 3.5 V,

To  0.1%

25

°

C

6.4

µ

s

ts

Settling time

,

RL = 2 k

‡,

To 0 01%

25

°

C

13 1

µ

s

L

CL = 100 pF‡

To  0.01%

13.1

φ

m

Phase margin at unity gain

RL = 2 k

‡,

CL = 100 pF‡

25

°

C

66

°

Gain margin

RL = 2 k

‡,

CL = 100 pF‡

25

°

C

11

dB

† Full range for the C suffix is 0

°

C to 70

°

C. Full range for the dual I suffix is – 40

°

C to 85

°

C. Full range for the quad I suffix is – 40

°

C to 125

°

C.

‡ Referenced to 2.5 V

background image

TLV2432, TLV2432A, TLV2434, TLV2434A

Advanced LinCMOS

 RAIL-TO-RAIL OUTPUT

WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS

SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999

11

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

electrical characteristics at specified free-air temperature, V

DD

 = 5 V (unless otherwise noted)

PARAMETER

TEST CONDITIONS

TA†

TLV243xQ,

TLV243xM

UNIT

A

MIN

TYP

MAX

VIC = 0

TLV2453x

25

°

C

300

2000

VIO

Input offset voltage

VIC = 0,

VO = 0, 

TLV2453x

Full range

2500

µ

V

VIO

Input offset voltage

O

,

VDD

±

 = 

±

2.5 V,

R

50

TLV2453xA

25

°

C

300

950

µ

V

RS = 50 

TLV2453xA

Full range

2000

α

VIO

Temperature coefficient of input offset voltage

25

°

C

2

µ

V/

°

C

α

VIO

Temperature coefficient of input offset voltage

to 70

°

C

2

µ

V/

°

C

Input offset voltage long-term drift 

(see Note 4)

VIC = 0,

VDD

±

=

±

2.5 V,

25

°

C

0.003

µ

V/mo

IIO

Input offset current

VIC = 0,

VO = 0,

VDD

±

 = 

±

2.5 V,

RS = 50 

25

°

C

0.5

pA

IIO

Input offset current

Full range

150

pA

IIB

Input bias current

25

°

C

1

pA

IIB

Input bias current

Full range

300

pA

VICR

Common mode input voltage range

|VIO|

5 mV

RS = 50

25

°

C

0

to

4.5

–0.25

to

4.75

V

VICR

Common-mode input voltage range

|VIO| 

 5 mV,

RS = 50 

Full range

0

to

4.2

V

IOH = – 100 

µ

A

25

°

C

4.97

VOH

High-level output voltage

IOH = 5 mA

25

°

C

4

4.35

V

IOH = – 5 mA

Full range

4

VIC = 2.5 V,

IOL =  100 

µ

A

25

°

C

0.01

VOL

Low-level output voltage

VIC = 2 5 V

IOL = 5

m

A

25

°

C

0.8

V

VIC = 2.5 V,

IOL = 5 

m

A

Full range

1.25

V

2 5 V

R

2 k

25

°

C

2.5

3.8

AVD

Large-signal differential voltage amplification

VIC = 2.5 V,

VO = 1 V to 4 V

RL = 2 k

Full range

0.5

V/mV

VD

g

g

g

VO = 1 V to 4 V

RL = 1 M

25

°

C

950

ri(d)

Differential input resistance

25

°

C

1000

G

ri(c)

Common-mode input resistance

25

°

C

1000

G

ci(c)

Common-mode input capacitance

f = 10 kHz

25

°

C

8

pF

zo

Closed-loop output impedance

f = 100 kHz,

AV = 10

25

°

C

130

CMRR

Common mode rejection ratio

VIC = 0 to 4.5 V, VO = 2.5 V,

25

°

C

70

90

dB

CMRR

Common-mode rejection ratio

IC

,

O

,

RS = 50

Full range

70

dB

kSVR

Supply voltage rejection ratio (

VDD/

VIO)

VDD =  4.4 V to 8 V,

25

°

C

80

95

dB

kSVR

Supply-voltage rejection ratio (

VDD/

VIO)

DD

,

VIC = VDD /2,

No load

Full range

80

dB

IDD

Supply current

VO = 2 5 V

No load

25

°

C

200

250

µ

A

IDD

Supply current

VO = 2.5 V,

No load

Full range

270

µ

A

† Full range is – 40

°

C to 125

°

C for Q level part, – 55

°

C to 125

°

C for M level part.

‡ Referenced to 2.5 V

NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150

°

C extrapolated

to TA = 25

°

C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

background image

TLV2432, TLV2432A, TLV2434, TLV2434A

Advanced LinCMOS

 RAIL-TO-RAIL OUTPUT

WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS

SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999

12

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

operating characteristics at specified free-air temperature, V

DD

 = 5 V

PARAMETER

TEST CONDITIONS

TA†

TLV243xQ,

TLV243xM,

TLV243xAQ,

TLV243xAM

UNIT

MIN

TYP

MAX

VO 1 5 V to 3 5 V

RL 2 k

25

°

C

0.15

0.25

SR

Slew rate at unity gain

VO = 1.5 V to 3.5 V,

CL = 100 pF‡

RL = 2 k

‡,

Full

0 1

V/

µ

s

CL = 100  F‡

range

0.1

V

Equivalent input noise voltage

f = 10 Hz

25

°

C

100

nV/

Hz

Vn

Equivalent input noise voltage

f = 1 kHz

25

°

C

18

nV/

Hz

VN(PP)

Peak to peak equivalent input noise voltage

f = 0.1 Hz to 1 Hz

25

°

C

1.9

µ

V

VN(PP)

Peak-to-peak equivalent input noise voltage

f = 0.1 Hz to 10 Hz

25

°

C

2.8

µ

V

In

Equivalent input noise current

25

°

C

0.6

fA

Hz

THD + N

Total harmonic distortion plus noise

VO = 1.5 V to 3.5 V,

f

1 kHz

AV = 1

25

°

C

0.045%

THD + N

Total harmonic distortion plus noise

f = 1  kHz,

RL = 2 k

AV = 10

25

°

C

0.4%

Gain-bandwidth product

f = 10  kHz, 

CL = 100 pF‡

RL =2 k

‡,

25

°

C

0.55

MHz

BOM

Maximum output-swing bandwidth

VO(PP) = 2 V, 

RL = 2 k

‡,

AV = 1, 

CL = 100 pF‡

25

°

C

100

kHz

AV = – 1,

To 0 1%

6 4

t

Settling time

AV =  1,

Step = 1.5 V to 3.5 V,

To  0.1%

25

°

C

6.4

µ

s

ts

Settling time

,

RL = 2 k

‡,

To 0 01%

25

°

C

13 1

µ

s

L

CL = 100 pF‡

To  0.01%

13.1

φ

m

Phase margin at unity gain

RL = 2 k

‡,

CL = 100 pF‡

25

°

C

66

°

Gain margin

RL = 2 k

‡,

CL = 100 pF‡

25

°

C

11

dB

† Full range is – 40

°

C to 125

°

C for Q level part, – 55

°

C to 125

°

C for M level part.

‡ Referenced to 2.5 V

background image

TLV2432, TLV2432A, TLV2434, TLV2434A

Advanced LinCMOS

 RAIL-TO-RAIL OUTPUT

WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS

SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999

13

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Table of Graphs

FIGURE

VIO

Input offset voltage

Distribution

2,3

VIO

Input offset voltage

vs Common-mode input voltage

,

4,5

α

VIO

Temperature coefficient

Distribution

6,7

IIB/IIO

Input bias and input offset currents

vs Free-air temperature

8

VOH

High-level output voltage

vs High-level output current

9,11

VOL

Low-level output voltage

vs Low-level output current

10,12

VO(PP)

Maximum peak-to-peak output voltage

vs Frequency

13

IOS

Short circuit output current

vs Supply voltage

14

IOS

Short-circuit output current

y

g

vs Free-air temperature

15

VID

Differential input voltage

vs Output voltage

16,17

Differential gain

vs Load resistance

18

AVD

Large-signal differential voltage amplification

vs Frequency

19,20

AVD

Differential voltage amplification

vs Free-air temperature

21,22

zo

Output impedance

vs Frequency

23,24

CMRR

Common mode rejection ratio

vs Frequency

25

CMRR

Common-mode rejection ratio

q

y

vs Free-air temperature

26

kSVR

Supply voltage rejection ratio

vs Frequency

27,28

kSVR

Supply-voltage rejection ratio

q

y

vs Free-air temperature

,

29

IDD

Supply current

vs Supply voltage

30

SR

Slew rate

vs Load capacitance

31

SR

Slew rate

vs Free-air temperature

32

VO

Inverting large-signal pulse response

33,34

VO

Voltage-follower large-signal pulse response

35,36

VO

Inverting small-signal pulse response

37,38

VO

Voltage-follower small-signal pulse response

39,40

Vn

Equivalent input noise voltage

vs Frequency

41, 42

Noise voltage (referred to input)

Over a 10-second period

43

THD + N

Total harmonic distortion plus noise

vs Frequency

44,45

Gain bandwidth product

vs Free-air temperature

46

Gain-bandwidth product

vs Supply voltage

47

φ

Phase margin

vs Frequency

19,20

φ

m

Phase margin

q

y

vs Load capacitance

,

48

Gain margin

vs Load capacitance

49

B1

Unity-gain bandwidth

vs Load capacitance

50

background image

TLV2432, TLV2432A, TLV2434, TLV2434A

Advanced LinCMOS

 RAIL-TO-RAIL OUTPUT

WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS

SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999

14

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 2

15

5

0

–1600

–800

0

25

30

35

800

1600

20

10

408 Amplifiers From 1 Wafer Lot

VDD

±

 = 

±

1.5 V

TA = 25

°

C

Precentage of 

Amplifiers – %

DISTRIBUTION OF TLV2432

INPUT OFFSET VOLTAGE

VIO – Input Offset Voltage – 

µ

V

Figure 3

20

15

5

0

–1600

–800

0

25

30

35

800

1600

10

408 Amplifiers From 1 Wafer Lot

Percentage of 

Amplifiers – %

DISTRIBUTION OF TLV2432

INPUT OFFSET VOLTAGE

VIO – Input Offset Voltage – 

µ

V

VDD

±

 = 

±

2.5 V

TA = 25

°

C

Figure 4

0

–0.5

–1.5

–2

–0.5

0

0.5

1

1.5

1

1.5

2

2

2.5

3

0.5

–1

VDD =3 V

TA = 25

°

C

VIO – Input Offset V

oltage 

– 

mV

INPUT OFFSET VOLTAGE

vs

COMMON-MODE INPUT VOLTAGE

ÁÁÁ

ÁÁÁ

ÁÁÁ

V

IO

VIC – Common-Mode Input Voltage – V

Figure 5

0

–0.5

–1.5

–2

–0.5 0

0.5

1

1.5

2

2.5

1

1.5

2

3

3.5

4

5

0.5

–1

4.5

VDD = 5 V

TA = 25

°

C

VIO – Input Offset V

oltage 

– 

mV

INPUT OFFSET VOLTAGE

vs

COMMON-MODE INPUT VOLTAGE

ÁÁ

ÁÁ

ÁÁ

V

IO

VIC – Common-Mode Input Voltage – V

background image

TLV2432, TLV2432A, TLV2434, TLV2434A

Advanced LinCMOS

 RAIL-TO-RAIL OUTPUT

WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS

SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999

15

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 6

10

5

0

–4

–3

–2

–1

0

1

15

20

25

2

3

4

32 Amplifiers From 1 Wafer Lot

VDD = 

±

 1.5 V

TA = 25

°

C to 125

°

C

Percentage of 

Amplifiers – %

DISTRIBUTION OF TLV2432 INPUT OFFSET

VOLTAGE TEMPERATURE COEFFICIENT

α

VIO – Temperature Coefficient – 

µ

V /

°

C

Figure 7

10

5

0

–4

–3

–2

–1

0

1

15

20

25

2

3

4

32 Amplifiers From 1 Wafer Lot

VDD = 

±

 2.5 V

TA = 25

°

C to 125

°

C

Percentage of 

Amplifiers – %

DISTRIBUTION OF TLV2432 INPUT OFFSET

VOLTAGE TEMPERATURE COEFFICIENT

α

VIO – Temperature Coefficient – 

µ

V /

°

C

Figure 8

10

5

30

0

25

45

65

85

IIB and IIO – Input Bias and Input Offset Currents – pA

20

15

25

INPUT BIAS AND INPUT OFFSET CURRENTS

vs

FREE-AIR TEMPERATURE

35

105

125

IIB

IIO

VDD

±

 = 

±

2.5 V

VIC = 0 V

VO = 0

RS = 50 

TA – Free-Air Temperature – 

°

C

ÁÁ

ÁÁ

I IB

I IO

 

Figure 9

TA = –40

°

C

TA = 25

°

C

TA = 0

°

C

TA = 125

°

C

VDD = 3 V

1.5

1

0.5

0

0

3

6

9

2

2.5

3

12

15

VOH – High-Level Output V

oltage – V

HIGH-LEVEL OUTPUT VOLTAGE

vs

HIGH-LEVEL OUTPUT CURRENT

IOH – High-Level Output Current – mA

ÁÁ

ÁÁ

V

OH

background image

TLV2432, TLV2432A, TLV2434, TLV2434A

Advanced LinCMOS

 RAIL-TO-RAIL OUTPUT

WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS

SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999

16

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 10

TA = 125

°

C

1.4

4

5

TA = 85

°

C

TA = 25

°

C

TA = –40

°

C

VDD = 3 V

0.8

0.6

0.2

0

0

1

2

3

1

1.2

0.4

VOL

 – Low-Level Output V

oltage – V

LOW-LEVEL OUTPUT VOLTAGE

vs

LOW-LEVEL OUTPUT CURRENT

IOL – Low-Level Output Current – mA

ÁÁ

ÁÁ

ÁÁ

V

OL

Figure 11

TA = 125

°

C

TA = 85

°

C

TA = 25

°

C

TA =–40

°

C

VDD = 5 V

2

1

0

0

4

8

12

3

4

5

16

20

VOH – High-Level Output V

oltage – V

HIGH-LEVEL OUTPUT VOLTAGE

vs

HIGH-LEVEL OUTPUT CURRENT

IOH – High-Level Output Current –

m

A

ÁÁ

ÁÁ

V

OH

Figure 12

TA = 125

°

C

TA = 85

°

C

TA = 25

°

C

TA = –40

°

C

VDD = 5 V

0.6

0.4

0.2

0

0

1

2

3

0.8

1

1.2

4

5

VOL

 – Low-Level Output V

oltage – V

LOW-LEVEL OUTPUT VOLTAGE

vs

LOW-LEVEL OUTPUT CURRENT

ÁÁÁ

ÁÁÁ

ÁÁÁ

V

OL

IOL – Low-Level Output Current – mA

Figure 13

4

2

1

0

5

3

102

103

104

105

106

VDD = 5 V

VDD = 3 V

RL = 2 k

TA = 25

°

C

VO(PP) – Maximum Peak-to-Peak Output V

oltage – V

f – Frequency – Hz

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE

vs

FREQUENCY

ÁÁ

ÁÁ

ÁÁ

V

O(PP)

background image

TLV2432, TLV2432A, TLV2434, TLV2434A

Advanced LinCMOS

 RAIL-TO-RAIL OUTPUT

WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS

SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999

17

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 14

VO = VDD/2

VIC = VDD/2

TA = 25

°

C

0

–5

–15

–20

2

3

4

5

6

7

10

15

20

8

9

10

5

–10

IOS – Short-Circuit Output Current – mA

SHORT-CIRCUIT OUTPUT CURRENT

vs

SUPPLY VOLTAGE

I OS

 

VDD  – Supply Voltage – V

Figure 15

0

–5

–15

–20

–75

–50

–25

0

25

50

10

15

20

75

100

125

5

–10

VID = –100 mV

VID = 100 mV

VDD = 5 V

VIC = 2.5 V

VO = 2.5 V

IOS – Short-Circuit Output Current – mA

SHORT-CIRCUIT OUTPUT CURRENT

vs

FREE-AIR TEMPERATURE

TA – Free-Air Temperature – 

°

C

I OS

 

Figure 16

VO – Output Voltage – V

VDD = 3 V

RL = 2 k

VIC = 1.5 V

TA = 25

°

C

0

–250

–500

–1000

0

0.5

1

1.5

– Differential Input V

oltage – 

500

750

DIFFERENTIAL INPUT VOLTAGE

vs

OUTPUT VOLTAGE

1000

2

2.5

3

250

–750

V

ID

V

µ

Figure 17

VDD = 5 V

VIC = 2.5 V

RL = 2 k

TA = 25

°

C

0

–250

–750

–1000

0

1

2

3

500

750

DIFFERENTIAL INPUT VOLTAGE

vs

OUTPUT VOLTAGE

1000

4

5

VO – Output Voltage – V

– Differential Input V

oltage – 

V

ID

V

µ

250

–500

background image

TLV2432, TLV2432A, TLV2434, TLV2434A

Advanced LinCMOS

 RAIL-TO-RAIL OUTPUT

WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS

SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999

18

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

VDD = 5 V

VDD = 3 V

VO(PP) = 2 V

TA = 25

°

C

1

Differential Gain – V/ mV

DIFFERENTIAL GAIN

vs

LOAD RESISTANCE

RL – Load Resistance – k

103

102

101

1

101

102

103

Figure 18

 

104

VDD = 5 V

RL = 2 k

CL = 100 pF

TA = 25

°

C

40

20

0

–40

80

–20

60

105

106

107

om – Phase Margin 

φ

m

f – Frequency – Hz

LARGE-SIGNAL DIFFERENTIAL VOLTAGE

AMPLIFICATION AND PHASE MARGIN

vs

FREQUENCY

A

VD – Large-Signal Differential

ÁÁ

ÁÁ

A

VD

V

oltage 

Amplification – dB

180

°

135

°

90

°

45

°

0

°

–45

°

–90

°

Figure 19

background image

TLV2432, TLV2432A, TLV2434, TLV2434A

Advanced LinCMOS

 RAIL-TO-RAIL OUTPUT

WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS

SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999

19

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

40

20

0

–40

80

–20

60

VDD = 3 V

RL = 2 k

CL = 100 pF

TA = 25

°

C

om – Phase Margin 

φ

m

f – Frequency – Hz

LARGE-SIGNAL DIFFERENTIAL VOLTAGE

AMPLIFICATION AND PHASE MARGIN

vs

FREQUENCY

A

VD – Large-Signal Differential

ÁÁ

ÁÁ

ÁÁ

A

VD

V

oltage 

Amplification – dB

104

105

106

107

180

°

135

°

90

°

45

°

0

°

–45

°

–90

°

Figure 20

Figure 21

10

1

0.1

1000

100

– Differential V

oltage 

Amplification 

– 

V/mV

A

VD

TA – Free-Air Temperature  – 

°

C

– 75

– 50

– 25

0

25

50

75

100

125

10000

VDD = 5 V   

VIC = 2.5 V

VO = 1 V to 4 V

RL = 1 M

RL = 2 k

DIFFERENTIAL VOLTAGE AMPLIFICATION

vs

FREE-AIR TEMPERATURE

Figure 22

10

1

0.1

1000

100

– Differential V

oltage 

Amplification 

– 

V/mV

A

VD

DIFFERENTIAL VOLTAGE AMPLIFICATION

vs

FREE-AIR TEMPERATURE

TA – Free-Air Temperature  – 

°

C

– 75

– 50

– 25

0

25

50

75

100

125

VDD = 3 V   

VIC = 2.5 V

VO = 0.5 V to 2.5 V

RL = 1 M

RL = 2 k

background image

TLV2432, TLV2432A, TLV2434, TLV2434A

Advanced LinCMOS

 RAIL-TO-RAIL OUTPUT

WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS

SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999

20

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 23

102

AV = 100

AV = 10

AV = 1

VDD = 3 V

TA = 25

°

C

100

10

1

1000

103

104

105

zo – Output Impedance – 0

OUTPUT IMPEDANCE

vs

FREQUENCY

f – Frequency – Hz

z

o

Figure 24

102

AV = 100

AV = 10

AV = 1

VDD = 5 V

TA = 25

°

C

100

10

1

1000

103

104

105

OUTPUT IMPEDANCE

vs

FREQUENCY

f – Frequency – Hz

zo – Output Impedance – 0

z

o

Figure 25

102

80

40

20

0

100

60

103

104

105

106

VDD = 5 V

VIC = 2.5 V

VDD = 3 V

VIC = 1.5 V

TA = 25

°

C

f – Frequency – Hz

COMMON-MODE REJECTION RATIO

vs

FREQUENCY

CMRR – Common-Mode Rejection Ratio – dB

Figure 26

TA – Free-Air Temperature  – 

°

C

CMRR – Common-Mode Rejection Ratio – dB

COMMON-MODE REJECTION RATIO

vs

FREE-AIR TEMPERATURE

– 75

– 50

– 25

0

25

50

75

100

125

VDD  = 5 V

VDD = 3 V

96

94

92

90

100

98

background image

TLV2432, TLV2432A, TLV2434, TLV2434A

Advanced LinCMOS

 RAIL-TO-RAIL OUTPUT

WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS

SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999

21

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 27

101

80

60

40

0

120

20

100

102

103

104

105

106

VDD = 3 V

TA = 25

°

C

f – Frequency – Hz

SUPPLY-VOLTAGE REJECTION RATIO

vs

FREQUENCY

KSVR – Supply-V

oltage Rejection Ratio – dB

ÁÁ

ÁÁ

ÁÁ

k

SVR

Figure 28

101

80

60

40

0

120

20

100

102

103

104

105

106

VDD = 5 V

TA = 25

°

C

KSVR – Supply-V

oltage Rejection Ratio – dB

f – Frequency – Hz

SUPPLY-VOLTAGE REJECTION RATIO

vs

FREQUENCY

ÁÁ

ÁÁ

ÁÁ

k

SVR

Figure 29

TA – Free-Air Temperature  – 

°

C

SUPPLY VOLTAGE REJECTION RATIO

vs

FREE-AIR TEMPERATURE

96

94

92

90

100

– 75

– 50

– 25

0

25

50

75

100

125

VDD  = 2.7 V to 8 V

VO  = VDD/2

98

kSVR – Supply-V

oltage Rejection Ratio – dB

k

SVR

Figure 30

150

100

50

0

0

2

4

6

200

250

300

8

10

VO = VDD/2

No Load

TA = 25

°

C

TA = – 40

°

C

TA = 85

°

C

IDD – Supply Current –

SUPPLY CURRENT

vs

SUPPLY VOLTAGE

VDD  – Supply Voltage – V

ÁÁ

ÁÁ

ÁÁ

I DD

A

µ

background image

TLV2432, TLV2432A, TLV2434, TLV2434A

Advanced LinCMOS

 RAIL-TO-RAIL OUTPUT

WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS

SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999

22

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 31

101

SR +

VDD = 3 V

AV = – 1

TA = 25

°

C

SR –

0.4

0.3

0.2

0

0.6

0.1

0.5

SR – Slew Rate – v/us

SLEW RATE

vs

LOAD CAPACITANCE

s

µ

V/

CL – Load Capacitance – pF

102

103

104

105

Figure 32

TA – Free-Air Temperature  – 

°

C

SLEW RATE

vs

FREE-AIR TEMPERATURE

0.25

0.2

0.15

0.1

0.35

– 75

– 50

– 25

0

25

50

75

100

125

0.3

VDD = 5 V

RL = 2 k

CL = 100 pF

AV = 1

µ

s

SR – Slew Rate – V/   

Figure 33

1.5

1

0.5

0

0

10

20

30

2

2.5

3

40

50

INVERTING LARGE-SIGNAL PULSE

RESPONSE

VDD = 3 V

RL = 2 k

CL = 100 pF

AV = – 1

TA = 25

°

C

t – Time – 

µ

s

VO – Output V

oltage 

– 

V

V

O

Figure 34

INVERTING LARGE-SIGNAL PULSE

RESPONSE

VDD = 5 V

RL = 2 k

CL = 100 pF

AV = – 1

TA = 25

°

C

t – Time – 

µ

s

2

1

0

0

10

20

30

3

4

5

40

50

VO – Output V

oltage 

– 

V

V

O

background image

TLV2432, TLV2432A, TLV2434, TLV2434A

Advanced LinCMOS

 RAIL-TO-RAIL OUTPUT

WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS

SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999

23

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 35

1.5

1

0.5

0

0

10

20

30

2

2.5

3

40

50

VOLTAGE-FOLLOWER LARGE-SIGNAL

PULSE RESPONSE

VDD = 3 V

RL = 2 k

CL = 100 pF

AV = 1

TA = 25

°

C

t – Time – 

µ

s

VO – Output V

oltage 

– 

V

V

O

Figure 36

VOLTAGE-FOLLOWER LARGE-SIGNAL

PULSE RESPONSE

VDD = 5 V

RL = 2 k

CL = 100 pF

AV = 1

TA = 25

°

C

t – Time – 

µ

s

VO – Output V

oltage 

– 

V

V

O

2

1

0

0

5

10

15

20

25

30

3

4

5

35

40

45

50

Figure 37

1.5

1.48

1.46

1.44

0

0.5

1

1.5

2

2.5

3

1.52

1.56

1.58

3.5

4

4.5

5

VDD = 3 V

RL = 2 k

CL = 100 pF

AV = –1

TA = 25

°

C

t – Time – 

µ

s

VO – Output V

oltage 

– 

V

INVERTING SMALL-SIGNAL PULSE

RESPONSE

1.54

V

O

Figure 38

2.48

2.46

2.44

0

0.5

1

1.5

2

2.5

3

2.54

2.56

2.58

3.5

4

4.5

5

INVERTING SMALL-SIGNAL

PULSE RESPONSE

VDD = 5 V

RL = 2 k

CL = 100 pF

AV = – 1

TA = 25

°

C

VO – Output V

oltage 

– 

V

V

O

t – Time – 

µ

s

2.52

2.5

background image

TLV2432, TLV2432A, TLV2434, TLV2434A

Advanced LinCMOS

 RAIL-TO-RAIL OUTPUT

WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS

SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999

24

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 39

1.5

1.48

1.46

1.44

0

0.5

1

1.5

2

2.5

3

1.54

1.56

1.58

3.5

4

4.5

5

VOLTAGE-FOLLOWER SMALL-SIGNAL

PULSE RESPONSE

VDD = 3 V

RL = 2 k

CL = 100 pF

AV = 1

TA = 25

°

C

VO – Output V

oltage 

– 

V

V

O

t – Time – 

µ

s

1.52

Figure 40

2.5

2.46

2.44

0

0.5

1

1.5

2

2.5

3

2.52

2.56

2.58

3.5

4

4.5

5

VOLTAGE-FOLLOWER SMALL-SIGNAL

PULSE RESPONSE

t – Time – 

µ

s

VO – Output V

oltage 

– 

V

V

O

VDD = 5 V

RL = 2 k

CL = 100 pF

AV = 1

TA = 25

°

C

2.54

2.48

Figure 41

101

80

60

20

0

120

40

100

VN – Equivalent Input Noise V

oltage – nv//Hz

f – Frequency – Hz

EQUIVALENT INPUT NOISE VOLTAGE

vs

FREQUENCY

nV/

Hz

V

n

VDD = 3 V

RS = 20 

TA = 25

°

C

102

103

104

Figure 42

101

80

60

20

0

120

40

100

VN – Equivalent Input Noise V

oltage – nv//Hz

f – Frequency – Hz

EQUIVALENT INPUT NOISE VOLTAGE

vs

FREQUENCY

nV/

Hz

V

n

VDD = 5 V

RS = 20 

TA = 25

°

C

102

103

104

background image

TLV2432, TLV2432A, TLV2434, TLV2434A

Advanced LinCMOS

 RAIL-TO-RAIL OUTPUT

WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS

SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999

25

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

0

–500

–1500

–2000

0

1

2

3

4

5

6

500

1500

2000

7

8

9

10

Noise V

oltage – nV

t – Time – s

NOISE VOLTAGE OVER A 10-SECOND PERIOD

VDD = 5 V

f = 0.1 Hz to 10 Hz

TA = 25

°

C

1000

–1000

Figure 43

Figure 44

101

1

0.1

0.01

10

THD 

– 

T

otal Harmonic Distortion Plus Noise – %

f – Frequency – Hz

TOTAL HARMONIC DISTORTION PLUS NOISE

vs

FREQUENCY

AV = 10

AV = 1

VDD = 5 V

TA = 25

°

C

AV = 10

AV = 1

RL = 2 k

 Tied to 2.5 V

RL = 2 k

 Tied to 0 V

102

103

104

105

Figure 45

101

THD 

– 

T

otal Harmonic Distortion Plus Noise – %

f – Frequency – Hz

TOTAL HARMONIC DISTORTION PLUS NOISE

vs

FREQUENCY

AV = 10

AV = 1

VDD = 3 V

TA = 25

°

C

AV = 10

AV = 1

RL = 2 k

 Tied to 1.5 V

RL = 2 k

 Tied to 0 V

1

0.1

0.01

10

102

103

104

105

background image

TLV2432, TLV2432A, TLV2434, TLV2434A

Advanced LinCMOS

 RAIL-TO-RAIL OUTPUT

WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS

SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999

26

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 46

400

300

100

0

–50

–25

0

25

50

500

700

800

75

100

125

Gain-Bandwidth Product – kHz

GAIN-BANDWIDTH PRODUCT

vs

FREE-AIR TEMPERATURE

TA – Free-Air Temperature – 

°

C

RL = 2 k

CL = 100 pF

f = 10 kHz

600

200

Figure 47

600

550

500

0

1

2

3

4

650

700

750

5

6

7

8

Gain-Bandwidth Product – kHz

GAIN-BANDWIDTH PRODUCT

vs

SUPPLY VOLTAGE

VDD  – Supply Voltage – V

f = 10 kHz

RL = 2 k

CL = 100 pF

TA = 25

°

C

Figure 48

101

75

°

om – Phase Margin

PHASE MARGIN

vs

LOAD CAPACITANCE

CL – Load Capacitance – pF

m

φ

Rnull = 500 

Rnull = 1000 

Rnull = 0

Rnull = 100 

TA = 25

°

C

RL = 2 k

Rnull = 200 

60

°

45

°

30

°

15

°

0

°

102

103

104

105

Figure 49

101

15

10

5

0

20

Gain Margin – dB

GAIN MARGIN

vs

LOAD CAPACITANCE

CL – Load Capacitance – pF

TA = 25

°

C

RL = 2 k

Rnull = 200 

Rnull = 0

Rnull = 100 

Rnull = 500 

Rnull = 1 k

102

103

104

105

background image

TLV2432, TLV2432A, TLV2434, TLV2434A

Advanced LinCMOS

 RAIL-TO-RAIL OUTPUT

WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS

SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999

27

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

101

400

300

200

0

600

100

500

– Unity-Gain Bandwidth – kHz

UNITY-GAIN BANDWIDTH

vs

LOAD CAPACITANCE

CL – Load Capacitance – pF

ÁÁ

ÁÁ

B

1

TA = 25

°

C

RL = 2 k

102

103

104

105

Figure 50

background image

TLV2432, TLV2432A, TLV2434, TLV2434A

Advanced LinCMOS

 RAIL-TO-RAIL OUTPUT

WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS

SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999

28

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

APPLICATION INFORMATION

macromodel information

Macromodel information provided was derived using Microsim

Parts

, the model generation software used

with Microsim

 PSpice

. The Boyle macromodel (see Note 5) and subcircuit in Figure 51 are generated using

the TLV243x typical electrical and operating characteristics at T

A

 = 25

°

C. Using this information, output

simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):

D

Maximum positive output voltage swing

D

Maximum negative output voltage swing

D

Slew rate

D

Quiescent power dissipation

D

Input bias current

D

Open-loop voltage amplification

D

Unity-gain frequency

D

Common-mode rejection ratio

D

Phase margin

D

DC output resistance

D

AC output resistance

D

Short-circuit output current limit

NOTE 4: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Intergrated Circuit Operational Amplifiers”, 

IEEE

Journal of Solid-State Circuits, SC-9, 353 (1974).

OUT

+

+

+

+

+

+

+

+

+

.SUBCKT TLV2432 1 2 3 4 5

C1

11

12

3.560E–12

C2

6

7

15.00E–12

DC

5

53

DX

DE

54

5

DX

DLP

90

91

DX

DLN

92

90

DX

DP

4

3

DX

EGND

99

0

POLY (2) (3,0) (4,0) 0 .5 .5

FB

7

99

POLY (5) VB VC VE VLP

+ VLN 0 21.04E6 –30E6 30E6 30E6 –30E6

GA

6

0

11

12 47.12E–6

GCM 0

6

10

99 

4.9E–9

ISS

3

10

DC 8.250E–6

HLIM

90

0

VLIM 1K

J1

11

2

10 JX

J2

12

1

10 JX

R2

6

9

100.0E3

RD1

60

11

21.22E3

RD2

60

12

21.22E3

R01

8

5

120

R02

7

99

120

RP

3

4

26.04E3

RSS

10

99

24.24E6

VAD

60

4

–.6

VB

9

0

DC 0

VC 3 

53

DC 

.65

VE

54

4

DC .65

VLIM

7

8

DC 0

VLP

91

0

DC 1.4

VLN

0

92

DC 9.4

.MODEL DX D (IS=800.0E–18)

.MODEL JX PJF (IS=500.0E–15 BETA=281E–6

+ VTO= –.065)

.ENDS

VCC +

RP

IN –

2

IN +

1

VCC –

VAD

RD1

11

J1

J2

10

RSS

ISS

3

12

RD2

60

VE

54

DE

DP

VC

DC

4

C1

53

R2

6

9

EGND

VB

FB

C2

GCM

GA

VLIM

8

5

RO1

RO2

HLIM

90

DLP

91

DLN

92

VLN

VLP

99

7

Figure 51. Boyle Macromodel and Subcircuit

PSpice and Parts are trademarks of MicroSim Corporation.

background image

TLV2432, TLV2432A, TLV2434, TLV2434A

Advanced LinCMOS

 RAIL-TO-RAIL OUTPUT

WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS

SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999

29

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

MECHANICAL DATA

D (R-PDSO-G**)    

PLASTIC SMALL-OUTLINE PACKAGE

14 PIN SHOWN

4040047 / D 10/96

0.228 (5,80)

0.244 (6,20)

0.069 (1,75) MAX

0.010 (0,25)

0.004 (0,10)

1

14

0.014 (0,35)

0.020 (0,51)

A

0.157 (4,00)

0.150 (3,81)

7

8

0.044 (1,12)

0.016 (0,40)

Seating Plane

0.010 (0,25)

PINS **

0.008 (0,20) NOM

A  MIN

A  MAX

DIM

Gage Plane

0.189

(4,80)

(5,00)

0.197

8

(8,55)

(8,75)

0.337

14

0.344

(9,80)

16

0.394

(10,00)

0.386

0.004 (0,10)

M

0.010 (0,25)

0.050 (1,27)

0

°

– 8

°

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-012

background image

TLV2432, TLV2432A, TLV2434, TLV2434A

Advanced LinCMOS

 RAIL-TO-RAIL OUTPUT

WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS

SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999

30

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

MECHANICAL DATA

FK (S-CQCC-N**)     

LEADLESS CERAMIC CHIP CARRIER

4040140 / D 10/96

28 TERMINAL SHOWN

B

0.358

(9,09)

MAX

(11,63)

0.560

(14,22)

0.560

0.458

0.858

(21,8)

1.063

(27,0)

(14,22)

A

NO. OF

MIN

MAX

0.358

0.660

0.761

0.458

0.342

(8,69)

MIN

(11,23)

(16,26)

0.640

0.739

0.442

(9,09)

(11,63)

(16,76)

0.962

1.165

(23,83)

0.938

(28,99)

1.141

(24,43)

(29,59)

(19,32)

(18,78)

**

20

28

52

44

68

84

0.020 (0,51)

TERMINALS

0.080 (2,03)

0.064 (1,63)

(7,80)

0.307

(10,31)

0.406

(12,58)

0.495

(12,58)

0.495

(21,6)

0.850

(26,6)

1.047

0.045 (1,14)

0.045 (1,14)

0.035 (0,89)

0.035 (0,89)

0.010 (0,25)

12

13

14

15

16

18

17

11

10

8

9

7

5

4

3

2

0.020 (0,51)

0.010 (0,25)

6

1

28

26

27

19

21

B SQ

A SQ

22

23

24

25

20

0.055 (1,40)

0.045 (1,14)

0.028 (0,71)

0.022 (0,54)

0.050 (1,27)

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. This package can be hermetically sealed with a metal lid.

D. The terminals are gold plated.

E. Falls within JEDEC MS-004

background image

TLV2432, TLV2432A, TLV2434, TLV2434A

Advanced LinCMOS

 RAIL-TO-RAIL OUTPUT

WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS

SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999

31

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

MECHANICAL DATA

JG (R-GDIP-T8)  

CERAMIC DUAL-IN-LINE PACKAGE

0.310 (7,87)

0.290 (7,37)

0.014 (0,36)

0.008 (0,20)

Seating Plane

4040107/C 08/96

5

4

0.065 (1,65)

0.045 (1,14)

8

1

0.020 (0,51) MIN

0.400 (10,20)

0.355 (9,00)

0.015 (0,38)

0.023 (0,58)

0.063 (1,60)

0.015 (0,38)

0.200 (5,08) MAX

0.130 (3,30) MIN

0.245 (6,22)

0.280 (7,11)

0.100 (2,54)

0

°

–15

°

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. This package can be hermetically sealed with a ceramic lid using glass frit.

D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.

E. Falls within MIL-STD-1835 GDIP1-T8

background image

TLV2432, TLV2432A, TLV2434, TLV2434A

Advanced LinCMOS

 RAIL-TO-RAIL OUTPUT

WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS

SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999

32

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

MECHANICAL DATA

PW (R-PDSO-G**)   

PLASTIC SMALL-OUTLINE PACKAGE

4040064 / E 08/96

14 PIN SHOWN

Seating Plane

1,20 MAX

1

A

7

14

0,19

4,50

4,30

8

6,20

6,60

0,30

0,75

0,50

0,25

Gage Plane

0,15 NOM

0,65

M

0,10

0

°

– 8

°

0,10

PINS **

A  MIN

A  MAX

DIM

2,90

3,10

8

4,90

5,10

14

6,60

6,40

4,90

5,10

16

7,70

20

7,90

24

9,60

9,80

28

0,15

0,05

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

background image

TLV2432, TLV2432A, TLV2434, TLV2434A

Advanced LinCMOS

 RAIL-TO-RAIL OUTPUT

WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS

SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999

33

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

MECHANICAL DATA

U (S-GDFP-F10)   

CERAMIC DUAL FLATPACK

4040179 / B 03/95

1.000 (25,40)

0.080 (2,03)

0.250 (6,35)

0.250 (6,35)

0.019 (0,48)

0.025 (0,64)

0.300 (7,62)

0.045 (1,14)

0.006 (0,15)

0.050 (1,27)

0.015 (0,38)

0.005 (0,13)

0.026 (0,66)

0.004 (0,10)

0.246 (6,10)

0.750 (19,05)

1

10

5

6

0.250 (6,35)

0.350 (8,89)

0.350 (8,89)

0.250 (6,35)

0.050 (1,27)

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. This package can be hermetically sealed with a ceramic lid using glass frit.

D. Index point is provided on cap for terminal identification only.

E. Falls within MIL STD 1835 GDFP1-F10 and JEDEC MO-092AA

background image

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue

any product or service without notice, and advise customers to obtain the latest version of relevant information

to verify, before placing orders, that information being relied on is current and complete. All products are sold

subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those

pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in

accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent

TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily

performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF

DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL

APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR

WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER

CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO

BE FULLY AT THE CUSTOMER’S RISK.

In order to minimize risks associated with the customer’s applications, adequate design and operating

safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent

that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other

intellectual property right of TI covering or relating to any combination, machine, or process in which such

semiconductor products or services might be or are used. TI’s publication of information regarding any third

party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

Copyright 

©

 2000, Texas Instruments Incorporated