background image

TLV225x, TLV225xA

Advanced LinCMOS

 RAIL-TO-RAIL

VERY LOW-POWER OPERATIONAL AMPLIFIERS

SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999

1

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

D

Output Swing Includes Both Supply Rails

D

Low Noise . . . 19 nV/

Hz Typ at f = 1 kHz

D

Low Input Bias Current . . . 1  pA  Typ

D

Fully Specified for Both Single-Supply and

Split-Supply Operation

D

Very Low Power . . . 34 

µ

A Per Channel Typ

D

Common-Mode Input Voltage Range

Includes Negative Rail

D

Low Input Offset Voltage

850 

µ

V Max at T

A

 = 25

°

C

D

Wide Supply Voltage Range

2.7 V to 8 V

D

Macromodel Included

D

Available in Q-Temp Automotive 

HighRel Automotive Applications

Configuration Control / Print Support

Qualification to Automotive Standards

     

description

The TLV2252 and TLV2254 are dual and

quadruple low-voltage operational amplifiers from

Texas Instruments. Both devices exhibit rail-to-rail

output performance for increased dynamic range

in single- or split-supply applications. The

TLV225x family consumes only 34 

µ

A of supply

current per channel. This micropower operation

makes them good choices for battery-powered

applications. This family is fully characterized at

3 V and 5 V and is optimized for low-voltage

applications. The noise performance has been

dramatically improved over previous generations

of CMOS amplifiers. The TLV225x has a noise

level of 19 nV/

Hz at 1kHz, four times lower than

competitive micropower solutions.

The TLV225x, exhibiting high input impedance

and low noise, are excellent for small-signal

conditioning for high-impedance sources, such as

piezoelectric transducers. Because of the micro-

power dissipation levels combined with 3-V

operation, these devices work well in hand-held

monitoring and remote-sensing applications. In

addition, the rail-to-rail output feature with single or split supplies makes this family a great choice when

interfacing with analog-to-digital converters (ADCs). For precision applications, the TLV225xA family is

available and has a maximum input offset voltage of 850 

µ

V.

The TLV2252/4 also make great upgrades to the TLV2322/4 in standard designs. They offer increased output

dynamic range, lower noise voltage, and lower input offset voltage. This enhanced feature set allows them to

be used in a wider range of applications. For applications that require higher output drive and wider input voltage

range, see the TLV2432 and TLV2442 devices. If your design requires single amplifiers, please see the

TLV2211/21/31 family. These devices are single rail-to-rail operational amplifiers in the SOT-23 package. Their

small size and low power consumption, make them ideal for high density, battery-powered equipment.

Copyright 

©

 1999, Texas Instruments Incorporated

PRODUCTION DATA information is current as of publication date.

Products conform to specifications per the terms of Texas Instruments

standard warranty. Production processing does not necessarily include

testing of all parameters.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of

Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Advanced LinCMOS is a trademark of Texas Instruments Incorporated.

Figure 1

– High-Level Output V

oltage – V

HIGH-LEVEL OUTPUT VOLTAGE

vs

HIGH-LEVEL OUTPUT CURRENT

ÁÁ

ÁÁ

V

OH

| IOH | – High-Level Output Current – 

µ

A

2

1.5

1

0

0

200

400

2.5

3

600

800

TA = 25

°

C

TA = 85

°

C

0.5

TA = 125

°

C

VDD = 3 V

TA = – 40

°

C

On products compliant to MIL-PRF-38535, all parameters are tested

unless otherwise noted. On all other products, production

processing does not necessarily include testing of all parameters.

background image

TLV225x, TLV225xA

Advanced LinCMOS

 RAIL-TO-RAIL

VERY LOW-POWER OPERATIONAL AMPLIFIERS

SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999

2

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TLV2252 AVAILABLE OPTIONS

PACKAGED DEVICES

TA

VIOmax

AT 25

°

C

SMALL

OUTLINE†

(D)

CHIP

CARRIER

(FK)

CERAMIC

DIP

(JG)

PLASTIC

DIP

(P)

TSSOP‡

(PW)

CERAMIC

FLATPACK

(U)

40

°

C to 125

°

C

850 

µ

V

TLV2252AID

TLV2252AIP

TLV2252AIPWLE

– 40

°

C to 125

°

C

µ

1500 

µ

V

TLV2252ID

TLV2252IP

40

°

C to 125

°

C

850 

µ

V

TLV2252AQD

– 40

°

C to 125

°

C

µ

1500 

µ

V

TLV2252QD

– 55

°

C to 125

°

C

850 

µ

V

1500 

µ

V

TLV2252AMFK

TLV2252MFK

TLV2252AMJG

TLV2252MJG

TLV2252AMU

TLV2252MU

† The D packages are available taped and reeled. Add R suffix to device type (e.g., TLV2252CDR).

‡ The PW package is available only left-end taped and reeled.

§ Chips are tested at 25

°

C.

TLV2254 AVAILABLE OPTIONS

PACKAGED DEVICES

TA

VIOmax

AT 25

°

C

SMALL

OUTLINE†

(D)

CHIP

CARRIER

(FK)

CERAMIC

DIP

(J)

PLASTIC

DIP

(N)

TSSOP‡

(PW)

CERAMIC

FLATPACK

(W)

40

°

C to 125

°

C

850 

µ

V

TLV2254AID

TLV2254AIN

TLV2254AIPWLE

– 40

°

C to 125

°

C

µ

1500 

µ

V

TLV2254ID

TLV2254IN

40

°

C to 125

°

C

850 

µ

V

TLV2254AQD

– 40

°

C to 125

°

C

µ

1500 

µ

V

TLV2254QD

– 55

°

C to 125

°

C

850 

µ

V

1500 

µ

V

TLV2254AMFK

TLV2254MFK

TLV2254AMJ

TLV2254MJ

TLV2254AMW

TLV2254MW

† The D packages are available taped and reeled. Add R suffix to device type (e.g., TLV2254CDR).

‡ The PW package is available only left-end taped and reeled.

§ Chips are tested at 25

°

C.

background image

TLV225x, TLV225xA

Advanced LinCMOS

 RAIL-TO-RAIL

VERY LOW-POWER OPERATIONAL AMPLIFIERS

SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999

3

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TLV2252M, TLV2252AM . . . JG PACKAGE

(TOP VIEW)

TLV2252I, TLV2252AI

TLV2252Q, TLV2252AQ

D, P, OR PW PACKAGE

(TOP VIEW)

1

2

3

4

8

7

6

5

1OUT

1IN –

1IN +

V

DD –

/GND

V

DD +

2OUT

2IN –

2IN +

NC

V

CC

+

2OUT

2IN –

2IN +

NC

1OUT

1IN –

1IN +

V

CC –

/GND

  1

2

3

5

10

9

8

7

6

TLV2252M, TLV2252AM . . . U  PACKAGE

(TOP VIEW)

1

2

3

4

8

7

6

5

1OUT

1IN –

1IN +

V

DD –

/GND

V

DD +

2OUT

2IN –

2IN +

3

2

1 20 19

9 10 11 12 13

4

5

6

7

8

18

17

16

15

14

NC

2OUT

NC

2IN –

NC

NC

1IN –

NC

1IN +

NC

NC

1OUT

NC

2IN+

NC

NC

NC

NC

V

DD+

V

DD–

/GND

1

2

3

5

6

7

14

13

12

11

10

9

8

1OUT

1IN –

1IN +

V

DD +

2IN +

2IN –

2OUT

4OUT

4IN –

4IN +

V

DD –

/ GND

3IN +

3IN –

3OUT

TLV2254I, TLV2254AI, TLV2254Q, TLV2254AQ . . . D  OR  N  PACKAGE

TLV2254M, TLV2254AM . . . J  OR  W  PACKAGE

(TOP VIEW)

TLV2254I, TLV2254AI . . . PW PACKAGE

(TOP VIEW)

1

14

8

7

4OUT

4IN –

4IN +

V

DD –

/ GND

3IN +

3IN –

3OUT

1OUT

1IN –

1IN +

V

DD+

2IN +

2IN –

2OUT

3

2

1 20 19

9 10 11 12 13

4

5

6

7

8

18

17

16

15

14

4IN+

NC

V

DD –

/ GND

NC

3IN+

1IN+

NC

V

DD+

NC

2IN+

1IN –

1OUT

NC

3OUT

3IN –

4IN –

2IN –

NC

4OUT

2OUT

TLV2252M, TLV2252AM . . . FK PACKAGE

(TOP VIEW)

TLV2254M, TLV2254AM . . . FK PACKAGE

(TOP VIEW)

background image

T

emp

late 

R

e

lease 

D

ate: 

7

11

94

TL

V225x, TL

V2252xA

VER

Y

 LOW

-POWER OPERA

TIONAL

 AMPLIFIERS

SLOS185B 

– 

FEBRUAR

Y

 1997 – REVISED JUL

Y

 1999

Advanced LinCMOS

RAIL-T

O-RAIL

4

POST

 OFFICE BOX 655303     DALLAS, 

TEXAS 

75265

equivalent schematic (each amplifier)

Q3

Q6

Q9

Q12

Q14

Q16

Q2

Q5

Q7

Q8

Q10

Q11

D1

Q17

Q15

Q13

Q4

Q1

R5

C1

VDD +

IN +

IN –

R3

R4

R1

R2

OUT

VDD – / GND

R6

ACTUAL DEVICE COMPONENT COUNT†

COMPONENT

TLV2252

TLV2254

Transistors

38

76

Resistors

30

56

Diodes

9

18

Capacitors

3

6

† Includes both amplifiers and all ESD, bias, and trim circuitry

background image

TLV225x, TLV225xA

Advanced LinCMOS

 RAIL-TO-RAIL

VERY LOW-POWER OPERATIONAL AMPLIFIERS

SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999

5

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V

DD

 (see Note 1) 

8 V

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Differential input voltage, V

ID

 (see Note 2) 

±

V

DD

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Input voltage range, V

I

 (any input, see Note 1) 

V

DD –

– 0.3 V to V

DD+

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Input current, I

I

 (each input) 

±

5 mA

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Output current, I

O

 

±

50 mA

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Total current into V

DD +

  

±

50 mA

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Total current out of V

DD –

  

±

50 mA

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Duration of short-circuit current (at or below) 25

°

C (see Note 3) 

unlimited

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Continuous total power dissipation 

See Dissipation Rating Table

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Operating free-air temperature range, T

A

: I Suffix 

– 40

°

C to 125

°

C

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Q Suffix 

– 40

°

C to 125

°

C

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

M Suffix 

– 55

°

C to 125

°

C

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Storage temperature range, T

stg

  – 65

°

C to 150

°

C

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D, N, P, and PW packages 

260

°

C

. . . . . . . 

J, JG, U, and W packages 

300

°

C

. . . . . . . 

† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and

functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not

implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES:

1. All voltage values, except differential voltages, are with respect to VDD – .

2. Differential voltages are at the noninverting input with respect to the inverting input. Excessive current flows when input is brought

below VDD – – 0.3 V.

3. The output may be shorted to either supply. Temperature and /or supply voltages must be limited to ensure that the maximum

dissipation rating is not exceeded.

DISSIPATION RATING TABLE

PACKAGE

TA 

 25

°

C

DERATING FACTOR

TA = 85

°

C

TA = 125

°

C

PACKAGE

A

POWER RATING

ABOVE TA = 25

°

C

A

POWER RATING

A

POWER RATING

D–8

725 mW

5.8 mW/

°

C

377 mW

145 mW

D–14

950 mW

7.6 mW/

°

C

494 mW

190 mW

FK

1375 mW

11.0 mW/

°

C

715 mW

275 mW

J

1375 mW

11.0 mW/

°

C

715 mW

275 mW

JG

1050 mW

8.4 mW/

°

C

546 mW

210 mW

N

1150 mW

9.2 mW/

°

C

598 mW

230 mW

P

1000 mW

8.0 mW/

°

C

520 mW

200 mW

PW–8

525 mW

4.2 mW/

°

C

273 mW

105 mW

PW–14

700 mW

5.6 mW/

°

C

364 mW

140 mW

U

700 mW

5.5 mW/

°

C

370 mW

150 mW

W

700 mW

5.5 mW/

°

C

370 mW

150 mW

recommended operating conditions

TLV225xI

TLV225xQ

TLV225xM

UNIT

MIN

MAX

MIN

MAX

MIN

MAX

UNIT

Supply voltage, VDD

(see Note 1)

2.7

8

2.7

8

2.7

8

V

Input voltage range, VI

VDD –

VDD + – 1.3

VDD –

VDD + – 1.3

VDD –

VDD + – 1.3

V

Common-mode input voltage, VIC

VDD –

VDD + – 1.3

VDD –

VDD + – 1.3

VDD –

VDD + – 1.3

V

Operating free-air temperature, TA

– 40

125

– 40

125

– 55

125

°

C

NOTE 1: All voltage values, except differential voltages, are with respect to VDD – .

background image

TLV225x, TLV225xA

Advanced LinCMOS

 RAIL-TO-RAIL

VERY LOW-POWER OPERATIONAL AMPLIFIERS

SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999

6

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TLV2252I electrical characteristics at specified free-air temperature, V

DD

 = 3 V (unless otherwise

noted)

PARAMETER

TEST CONDITIONS

TA†

TLV2252I

TLV2252AI

UNIT

PARAMETER

TEST CONDITIONS

TA†

MIN

TYP

MAX

MIN

TYP

MAX

UNIT

VIO

Input offset voltage

V

1

V

V

0

25

°

C

200

1500

200

850

µ

V

VIO

In ut offset voltage

V

1

V

V

0

Full range

1750

1000

µ

V

α

VIO

Temperature coefficient

V

1

V

V

0

25

°

C

0 5

0 5

µ

V/

°

C

α

VIO

of input offset voltage

V

1

V

V

0

to 85

°

C

0.5

0.5

µ

V/

°

C

Input offset voltage

long-term drift (see

Note 4)

V

±

1 5 V

V

0

25

°

C

0.003

0.003

µ

V/mo

VDD

±

 = 

±

1.5 V,

VO = 0

VIC = 0, 

RS = 50

25

°

C

0.5

0.5

IIO

Input offset current

VO = 0,

RS = 50 

–40

°

C

to 85

°

C

150

150

pA

Full range

1000

1000

25

°

C

1

1

IIB

Input bias current

–40

°

C

to 85

°

C

150

150

pA

Full range

1000

1000

0

– 0.3

0

– 0.3

25

°

C

to

to

to

to

VICR

Common-mode input

RS = 50

|

VIO

| ≤

5 mV

2

2.2

2

2.2

V

VICR

voltage range

RS = 50 

Ω,

|

VIO 

|  ≤

5 mV

0

0

V

Full range

to

to

1.7

1.7

IOH = – 20 

µ

A

25

°

C

2.98

2.98

VOH

High-level output

IOH = – 75

µ

A

25

°

C

2.9

2.9

V

VOH

g

voltage

IOH = – 75 

µ

A

Full range

2.8

2.8

V

IOH = – 150 

µ

A

25

°

C

2.8

2.8

VIC = 1.5 V,

IOL =  50 

µ

A

25

°

C

10

10

Low level output

VIC = 1 5 V

IOL = 500

µ

A

25

°

C

100

100

VOL

Low-level output

voltage

VIC = 1.5 V,

IOL =  500 

µ

A

Full range

150

150

mV

voltage

VIC = 1 5 V

IOL = 1

m

A

25

°

C

200

200

VIC = 1.5 V,

IOL =  1 

m

A

Full range

300

300

Large signal differential

V

1 5 V

RL 100 k

25

°

C

100

250

100

250

AVD

Large-signal differential

voltage amplification

VIC = 1.5 V,

VO = 1 V to 2 V

RL = 100 k

Full range

10

10

V/mV

voltage am lification

VO = 1 V to 2 V

RL = 1 M

25

°

C

800

800

ri(d)

Differential input

resistance

25

°

C

1012

1012

ri(c)

Common-mode input

resistance

25

°

C

1012

1012

ci(c)

Common-mode input

capacitance

f = 10 kHz,

P package

25

°

C

8

8

pF

zo

Closed-loop output

impedance

f = 25 kHz,

AV = 10

25

°

C

220

220

CMRR

Common-mode

VIC = 0 to 1.7 V,

25

°

C

65

75

65

77

dB

CMRR

rejection ratio

IC

VO = 1.5 V, 

RS = 50

Full range

60

60

dB

† Full range is – 40

°

C to 125

°

C.

‡ Referenced to 1.5 V

NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150

°

C extrapolated

to TA = 25

°

C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

background image

TLV225x, TLV225xA

Advanced LinCMOS

 RAIL-TO-RAIL

VERY LOW-POWER OPERATIONAL AMPLIFIERS

SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999

7

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TLV2252I electrical characteristics at specified free-air temperature, V

DD

 = 3 V (unless otherwise

noted) (continued)

PARAMETER

TEST CONDITIONS

TA†

TLV2252I

TLV2252AI

UNIT

PARAMETER

TEST CONDITIONS

TA†

MIN

TYP

MAX

MIN

TYP

MAX

UNIT

kSVR

Supply voltage

rejection ratio

VDD =  2.7 V to 8 V,

25

°

C

80

95

80

100

dB

kSVR

rejection ratio 

(

VDD  /

VIO)

DD

VIC = VDD /2, No 

load

Full range

80

80

dB

IDD

Supply current

VO = 1 5 V

No load

25

°

C

68

125

68

125

µ

A

IDD

Su

ly current

VO = 1.5 V,

No load

Full range

150

150

µ

A

† Full range is – 40

°

C to 125

°

C.

TLV2252I operating characteristics at specified free-air temperature, V

DD

 = 3 V

PARAMETER

TEST CONDITIONS

TA†

TLV2252I

TLV2252AI

UNIT

PARAMETER

TEST CONDITIONS

TA†

MIN

TYP

MAX

MIN

TYP

MAX

UNIT

25

°

C

0 07

0 1

0 07

0 1

VO = 1.1 V to 1.9 V, 

25

°

C

0.07

0.1

0.07

0.1

SR

Slew rate at unity gain

O

RL = 100 k

‡, 

C

100 F‡

Full

0 05

0 05

V/

µ

s

CL = 100 pF‡

range

0.05

0.05

V

Equivalent input noise

f = 10 Hz

25

°

C

35

35

nV/

Hz

Vn

q

voltage

f = 1 kHz

25

°

C

19

19

nV/

Hz

VN(PP)

Peak-to-peak

equivalent input noise

f = 0.1 Hz to 1 Hz

25

°

C

0.6

0.6

µ

V

VN(PP)

equivalent input noise

voltage

f = 0.1 Hz to 10 Hz

25

°

C

1.1

1.1

µ

V

In

Equivalent input noise

current

25

°

C

0.6

0.6

fA /

Hz

Gain bandwidth product

f = 1  kHz,

RL = 50 k

‡,

25

°

C

0 187

0 187

MHz

Gain-bandwidth product

f   1  kHz,

CL = 100 pF‡

RL   50 k

,

25

°

C

0.187

0.187

MHz

BOM

Maximum output-swing

VO(PP) = 1 V, 

AV = 1,

25

°

C

60

60

kHz

BOM

g

bandwidth

O(PP)

,

RL = 50 k

‡,

V

,

CL = 100 pF‡

25

°

C

60

60

kHz

φ

m

Phase margin at unity

gain

RL = 50 k

‡,

CL = 100 pF‡

25

°

C

63

°

63

°

Gain margin

L

,

L

25

°

C

15

15

dB

† Full range is – 40

°

C to 125

°

C.

‡ Referenced to 1.5 V

background image

TLV225x, TLV225xA

Advanced LinCMOS

 RAIL-TO-RAIL

VERY LOW-POWER OPERATIONAL AMPLIFIERS

SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999

8

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TLV2252I electrical characteristics at specified free-air temperature, V

DD

 = 5 V (unless otherwise

noted)

PARAMETER

TEST CONDITIONS

TA†

TLV2252I

TLV2252AI

UNIT

PARAMETER

TEST CONDITIONS

TA†

MIN

TYP

MAX

MIN

TYP

MAX

UNIT

VIO

Input offset voltage

V

2

V

V

0

25

°

C

200

1500

200

850

µ

V

VIO

Input offset voltage

V

2

V

V

0

Full range

1750

1000

µ

V

α

VIO

Temperature coefficient

V

2

V

V

0

25

°

C

0 5

0 5

µ

V/

°

C

α

VIO

of input offset voltage

V

2

V

V

0

to 85

°

C

0.5

0.5

µ

V/

°

C

Input offset voltage long-

term drift (see Note 4)

V

2

V

V

0

25

°

C

0.003

0.003

µ

V/mo

VDD

±

 = 

±

2.5 V,

VIC = 0, 

25

°

C

0.5

0.5

IIO

Input offset current

VO = 0,

IC

RS = 50 

–40

°

C

to 85

°

C

150

150

pA

Full range

1000

1000

25

°

C

1

1

IIB

Input bias current

–40

°

C

to 85

°

C

150

150

pA

Full range

1000

1000

VICR

Common-mode input

|

VIO

| ≤

5 mV

RS = 50

25

°

C

0

to

4

– 0.3

to

4.2

0

to

4

– 0.3

to

4.2

V

VICR

voltage range

|

VIO 

|  ≤

5 mV,

RS = 50 

Full range

0

to

3.5

0

to

3.5

V

IOH = – 20 

µ

A

25

°

C

4.98

4.98

VOH

High level output voltage

IOH = 75

µ

A

25

°

C

4.9

4.94

4.9

4.94

V

VOH

High-level output voltage

IOH = – 75 

µ

A

Full range

4.8

4.8

V

IOH = – 150 

µ

A

25

°

C

4.8

4.88

4.8

4.88

VIC = 2.5 V,

IOL =  50 

µ

A

25

°

C

0.01

0.01

VIC = 2 5 V

IOL = 500

µ

A

25

°

C

0.09

0.15

0.09

0.15

VOL

Low-level output voltage

VIC = 2.5 V,

IOL =  500 

µ

A

Full range

0.15

0.15

V

VIC = 2 5 V

IOL = 1

m

A

25

°

C

0.2

0.3

0.2

0.3

VIC = 2.5 V,

IOL =  1 

m

A

Full range

0.3

0.3

L

i

l diff

ti l

V

2 5 V

RL 100 k

25

°

C

100

350

100

350

AVD

Large-signal differential

voltage amplification

VIC = 2.5 V,

VO = 1 V to 4 V

RL = 100 k

Full range

10

10

V/mV

voltage am lification

VO = 1 V to 4 V

RL = 1 M

25

°

C

1700

1700

ri(d)

Differential input

resistance

25

°

C

1012

1012

ri(c)

Common-mode input

resistance

25

°

C

1012

1012

ci(c)

Common-mode input

capacitance

f = 10 kHz,

P package

25

°

C

8

8

pF

zo

Closed-loop output

impedance

f = 25 kHz,

AV = 10

25

°

C

200

200

CMRR

Common-mode rejection

VIC = 0 to 2.7 V,

VO = 2.5 V, 

25

°

C

70

83

70

83

dB

CMRR

j

ratio

IC

RS = 50

O

Full range

70

70

dB

† Full range is – 40

°

C to 125

°

C.

‡ Referenced to 2.5 V

NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150

°

C extrapolated

to TA = 25

°

C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

background image

TLV225x, TLV225xA

Advanced LinCMOS

 RAIL-TO-RAIL

VERY LOW-POWER OPERATIONAL AMPLIFIERS

SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999

9

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TLV2252I electrical characteristics at specified free-air temperature, V

DD

 = 5 V (unless otherwise

noted) (continued)

PARAMETER

TEST CONDITIONS

TA†

TLV2252I

TLV2252AI

UNIT

PARAMETER

TEST CONDITIONS

TA†

MIN

TYP

MAX

MIN

TYP

MAX

UNIT

kSVR

Supply voltage rejection

VDD = 4.4 V to 8 V,

25

°

C

80

95

80

95

dB

kSVR

y

g

j

ratio (

VDD /

VIO)

DD

VIC = VDD /2,

No load

Full range

80

80

dB

IDD

Supply current

VO = 2 5 V

No load

25

°

C

70

125

70

125

µ

A

IDD

Su

ly current

VO = 2.5 V,

No load

Full range

150

150

µ

A

† Full range is – 40

°

C to 125

°

C.

TLV2252I operating characteristics at specified free-air temperature, V

DD

 = 5 V

PARAMETER

TEST CONDITIONS

TA†

TLV2252I

TLV2252AI

UNIT

PARAMETER

TEST CONDITIONS

TA†

MIN

TYP

MAX

MIN

TYP

MAX

UNIT

25

°

C

0 07

0 12

0 07

0 12

VO = 1 5 V to 3 5 V

RL = 100 k

25

°

C

0.07

0.12

0.07

0.12

SR

Slew rate at unity gain

VO = 1.5 V to 3.5 V,

CL = 100 pF‡

RL = 100 k

‡,

Full

0 05

0 05

V/

µ

s

CL = 100  F‡

range

0.05

0.05

V

Equivalent input noise

f = 10 Hz

25

°

C

36

36

nV/

Hz

Vn

q

voltage

f = 1 kHz

25

°

C

19

19

nV/

Hz

VN(PP)

Peak-to-peak

equivalent input

f = 0.1 Hz to 1 Hz

25

°

C

0.7

0.7

µ

V

VN(PP)

equivalent input

noise voltage

f = 0.1 Hz to 10 Hz

25

°

C

1.1

1.1

µ

V

In

Equivalent input noise

current

25

°

C

0.6

0.6

fA /

Hz

THD + N

Total harmonic

VO = 0.5 V to 2.5 V,

f = 20 kHz

AV = 1

25

°

C

0.2%

0.2%

THD + N

distortion plus noise

f = 20  kHz,

RL = 50 k

AV = 10

25

°

C

1%

1%

Gain-bandwidth

f = 50  kHz,

RL = 50 k

‡,

25

°

C

0 2

0 2

MHz

product

,

CL = 100 pF‡

L

,

25

°

C

0.2

0.2

MHz

BOM

Maximum output-swing

VO(PP) = 2 V, 

AV = 1,

25

°

C

30

30

kHz

BOM

g

bandwidth

O(PP)

,

RL = 50 k

‡,

V

,

CL = 100 pF‡

25

°

C

30

30

kHz

φ

m

Phase margin at unity

gain

RL = 50 k

‡,

CL = 100 pF‡

25

°

C

63

°

63

°

Gain margin

L

,

L

25

°

C

15

15

dB

† Full range is – 40

°

C to 125

°

C.

‡ Referenced to 2.5 V

background image

TLV225x, TLV225xA

Advanced LinCMOS

 RAIL-TO-RAIL

VERY LOW-POWER OPERATIONAL AMPLIFIERS

SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999

10

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TLV2254I electrical characteristics at specified free-air temperature, V

DD

 = 3 V (unless otherwise

noted)

PARAMETER

TEST CONDITIONS

TA†

TLV2254I

TLV2254AI

UNIT

PARAMETER

TEST CONDITIONS

TA†

MIN

TYP

MAX

MIN

TYP

MAX

UNIT

VIO

Input offset voltage

25

°

C

200

1500

200

850

µ

V

VIO

Input offset voltage

Full range

1750

1000

µ

V

α

VIO

Temperature

coefficient of input

25

°

C

0 5

0 5

µ

V/

°

C

α

VIO

coefficient of input

offset voltage

to 85

°

C

0.5

0.5

µ

V/

°

C

Input offset voltage

long-term drift

(see Note 4)

VDD

±

 = 

±

1.5 V,

VIC = 0,

25

°

C

0.003

0.003

µ

V/mo

VDD

±

   

±

1.5 V,

VO = 0,

VIC   0,

RS = 50 

25

°

C

0.5

0.5

IIO

Input offset current

O

S

–40

°

C

to 85

°

C

150

150

pA

Full range

1000

1000

25

°

C

1

1

IIB

Input bias current

–40

°

C

to 85

°

C

150

150

pA

Full range

1000

1000

25

°

C

0

– 0.3

0

– 0.3

VICR

Common-mode input

RS = 50 

Ω,

|

VIO

| ≤

5 mV

25

°

C

to 2

 to 2.2

 to 2

 to 2.2

V

VICR

voltage range

S

|

VIO 

| ≤

5 mV

Full range

0

0

V

Full range

to 1.7

to 1.7

IOH = – 20 

µ

A

25

°

C

2.98

2.98

VOH

High-level output

IOH = 75

µ

A

25

°

C

2.9

2.9

V

VOH

g

voltage

IOH = – 75 

µ

A

Full range

2.8

2.8

V

IOH = – 150 

µ

A

25

°

C

2.8

2.8

VIC = 1.5 V,

IOL =  50 

µ

A

25

°

C

10

10

Low level output

VIC = 1 5 V

IOL = 500

µ

A

25

°

C

100

100

VOL

Low-level output

voltage

VIC = 1.5 V,

IOL =  500 

µ

A

Full range

150

150

mV

voltage

VIC = 1 5 V

IOL

1

m

A

25

°

C

200

200

VIC = 1.5 V,

IOL =  1 

m

A

Full range

300

300

Large-signal

V

1 5 V

RL = 100 k

25

°

C

100

225

100

225

AVD

g

g

differential voltage

VIC = 1.5 V,

VO = 1 V to 2 V

RL = 100 k

Full range

10

10

V/mV

amplification

VO = 1 V to 2 V

RL = 1 M

25

°

C

800

800

ri(d)

Differential input

resistance

25

°

C

1012

1012

ri(c)

Common-mode input

resistance

25

°

C

1012

1012

ci(c)

Common-mode input

capacitance

f = 10 kHz,

N package

25

°

C

8

8

pF

zo

Closed-loop output

impedance

f = 25 kHz,

AV = 10

25

°

C

220

220

CMRR

Common-mode

VIC = 0 to 1.7 V, VO = 1.5 V,

25

°

C

65

75

65

77

dB

CMRR

rejection ratio

IC

RS = 50

O

Full range

60

60

dB

† Full range is – 40

°

C to 125

°

C.

‡ Referenced to 1.5 V

NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150

°

C extrapolated

to TA = 25

°

C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

background image

TLV225x, TLV225xA

Advanced LinCMOS

 RAIL-TO-RAIL

VERY LOW-POWER OPERATIONAL AMPLIFIERS

SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999

11

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TLV2254I electrical characteristics at specified free-air temperature, V

DD

 = 3 V (unless otherwise

noted) (continued)

PARAMETER

TEST CONDITIONS

TA†

TLV2254I

TLV2254AI

UNIT

PARAMETER

TEST CONDITIONS

TA†

MIN

TYP

MAX

MIN

TYP

MAX

UNIT

kSVR

Supply voltage

rejection ratio

VDD =  2.7 V to 8 V,

25

°

C

80

95

80

100

dB

kSVR

rejection ratio

(

VDD /

VIO)

DD

VIC = VDD /2, No 

load

Full range

80

80

dB

IDD

Supply current 

VO = 1 5 V

No load

25

°

C

135

250

135

250

µ

A

IDD

y

(four amplifiers)

VO = 1.5 V,

No load

Full range

300

300

µ

A

† Full range is – 40

°

C to 125

°

C.

TLV2254I operating characteristics at specified free-air temperature, V

DD

 = 3 V

PARAMETER

TEST CONDITIONS

TA†

TLV2254I

TLV2254AI

UNIT

PARAMETER

TEST CONDITIONS

TA†

MIN

TYP

MAX

MIN

TYP

MAX

UNIT

VO = 0 7 V to 1 7 V

25

°

C

0 07

0 1

0 07

0 1

SR

Slew rate at unity gain

VO = 0.7 V to 1.7 V,

RL = 100 k

25

°

C

0.07

0.1

0.07

0.1

V/

µ

s

SR

Slew rate at unity gain

RL = 100 k

‡,

C

100 F‡

Full range

0 05

0 05

V/

µ

s

CL = 100 pF‡

Full range

0.05

0.05

V

Equivalent input noise voltage

f = 10 Hz

25

°

C

35

35

nV/

Hz

Vn

Equivalent input noise voltage

f = 1 kHz

25

°

C

19

19

nV/

Hz

VN(PP)

Peak-to-peak equivalent input

f = 0.1 Hz to 1 Hz

25

°

C

0.6

0.6

µ

V

VN(PP)

q

noise voltage

f = 0.1 Hz to 10 Hz

25

°

C

1.1

1.1

µ

V

In

Equivalent input noise current

25

°

C

0.6

0.6

fA /

Hz

Gain bandwidth product

f = 1  kHz, 

RL 50 k

25

°

C

0 187

0 187

MHz

Gain-bandwidth product

RL = 50 k

‡,

CL = 100 pF ‡

25

°

C

0.187

0.187

MHz

BOM

Maximum output-swing

VO(PP) = 1 V,

AV = 1,

25

°

C

60

60

kHz

BOM

g

bandwidth

V

,

RL = 50 k

‡,

CL = 100 pF ‡

25

°

C

60

60

kHz

φ

m

Phase margin at unity gain

RL = 50 k

‡,

25

°

C

63

°

63

°

Gain margin

L

,

CL = 100 pF ‡

25

°

C

15

15

dB

† Full range is – 40

°

C to 85

°

C.

‡ Referenced to 1.5 V

background image

TLV225x, TLV225xA

Advanced LinCMOS

 RAIL-TO-RAIL

VERY LOW-POWER OPERATIONAL AMPLIFIERS

SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999

12

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TLV2254I electrical characteristics at specified free-air temperature, V

DD

 = 5 V (unless otherwise

noted)

PARAMETER

TEST CONDITIONS

TA†

TLV2254I

TLV2254AI

UNIT

PARAMETER

TEST CONDITIONS

TA†

MIN

TYP

MAX

MIN

TYP

MAX

UNIT

VIO

Input offset voltage

25

°

C

200

1500

200

850

µ

V

VIO

Input offset voltage

Full range

1750

1000

µ

V

α

VIO

Temperature

coefficient of input

25

°

C

0 5

0 5

µ

V/

°

C

α

VIO

coefficient of input

offset voltage

to 85

°

C

0.5

0.5

µ

V/

°

C

Input offset voltage

long-term drift

(see Note 4)

VDD

±

 = 

±

2.5 V,

VIC = 0, 

25

°

C

0.003

0.003

µ

V/mo

VDD

±

   

±

2.5 V,

VO = 0,

VIC   0, 

RS = 50 

25

°

C

0.5

0.5

IIO

Input offset current

O

S

–40

°

C

to 85

°

C

150

150

pA

Full range

1000

1000

25

°

C

1

1

IIB

Input bias current

–40

°

C

to 85

°

C

150

150

pA

Full range

1000

1000

25

°

C

0

– 0.3

0

– 0.3

VICR

Common-mode input

|

VIO

| ≤

5 mV

RS = 50

25

°

C

to 4

to 4.2

to 4

to 4.2

V

VICR

voltage range

|

VIO 

|  ≤

5 mV,

RS = 50 

Full range

0

0

V

Full range

to 3.5

to 3.5

IOH = – 20 

µ

A

25

°

C

4.98

4.98

VOH

High-level output

IOH = 75

µ

A

25

°

C

4.9

4.94

4.9

4.94

V

VOH

g

voltage

IOH = – 75 

µ

A

Full range

4.8

4.8

V

IOH = – 150 

µ

A

25

°

C

4.8

4.88

4.8

4.88

VIC = 2.5 V,

IOL =  50 

µ

A

25

°

C

0.01

0.01

Low level output

VIC = 2 5 V

IOL = 500

µ

A

25

°

C

0.09

0.15

0.09

0.15

VOL

Low-level output

voltage

VIC = 2.5 V,

IOL =  500 

µ

A

Full range

0.15

0.15

V

voltage

VIC = 2 5 V

IOL

1

m

A

25

°

C

0.2

0.3

0.2

0.3

VIC = 2.5 V,

IOL =  1 

m

A

Full range

0.3

0.3

Large-signal

V

2 5 V

RL 100 k

25

°

C

100

350

100

350

AVD

Large signal

differential voltage

VIC = 2.5 V,

VO = 1 V to 4 V

RL = 100 k

Full range

10

10

V/mV

VD

amplification

VO = 1 V to 4 V

RL = 1 M

25

°

C

1700

1700

ri(d)

Differential input

resistance

25

°

C

1012

1012

ri(c)

Common-mode input

resistance

25

°

C

1012

1012

ci(c)

Common-mode input

capacitance

f = 10 kHz,

N package

25

°

C

8

8

pF

zo

Closed-loop output

impedance

f = 25 kHz,

AV = 10

25

°

C

200

200

CMRR

Common-mode

VIC = 0 to 2.7 V, VO = 2.5 V, 

25

°

C

70

83

70

83

dB

CMRR

rejection ratio

IC

,

RS = 50

O

,

Full range

70

70

dB

† Full range is – 40

°

C to 125

°

C.

‡ Referenced to 2.5 V

NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150

°

C extrapolated

to TA = 25

°

C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

background image

TLV225x, TLV225xA

Advanced LinCMOS

 RAIL-TO-RAIL

VERY LOW-POWER OPERATIONAL AMPLIFIERS

SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999

13

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TLV2254I electrical characteristics at specified free-air temperature, V

DD

 = 5 V (unless otherwise

noted) (continued)

PARAMETER

TEST CONDITIONS

TA†

TLV2254I

TLV2254AI

UNIT

PARAMETER

TEST CONDITIONS

TA†

MIN

TYP

MAX

MIN

TYP

MAX

UNIT

kSVR

Supply voltage

rejection ratio

VDD = 4.4 V to 8 V,

25

°

C

80

95

80

95

dB

kSVR

rejection ratio

(

VDD /

VIO)

DD

VIC = VDD /2, No 

load

Full range

80

80

dB

IDD

Supply current

VO = 2 5 V

No load

25

°

C

140

250

140

250

µ

A

IDD

y

(four amplifiers)

VO = 2.5 V,

No load

Full range

300

300

µ

A

† Full range is – 40

°

C to 125

°

C.

TLV2254I operating characteristics at specified free-air temperature, V

DD

 = 5 V

PARAMETER

TEST CONDITIONS

T †

TLV2254I

TLV2254AI

UNIT

PARAMETER

TEST CONDITIONS

TA†

MIN

TYP

MAX

MIN

TYP

MAX

UNIT

Slew rate at unity

V

1 4 V to 2 6 V

R

100 k

25

°

C

0.07

0.12

0.07

0.12

SR

Slew rate at unity

gain

VO = 1.4 V to 2.6 V,

CL = 100 pF ‡

RL = 100 k

‡,

Full

range

0.05

0.05

V/

µ

s

V

Equivalent input

f = 10 Hz

25

°

C

36

36

nV/

Hz

Vn

q

noise voltage

f = 1 kHz

25

°

C

19

19

nV/

Hz

VN(PP)

Peak-to-peak

equivalent input

f = 0.1 Hz to 1 Hz

25

°

C

0.7

0.7

µ

V

VN(PP)

equivalent input

noise voltage

f = 0.1 Hz to 10 Hz

25

°

C

1.1

1.1

µ

V

In

Equivalent input

noise current

25

°

C

0.6

0.6

fA /

Hz

THD + N

Total harmonic

distortion plus

VO = 0.5 V to 2.5 V,

f = 20 kHz

AV = 1

25

°

C

0.2%

0.2%

THD + N

distortion plus

noise

f = 20  kHz,

RL = 50 k

AV = 10

25

°

C

1%

1%

Gain-bandwidth

f = 50  kHz,

RL = 50 k

‡,

25

°

C

0 2

0 2

MHz

product

,

CL = 100 pF ‡

L

,

25

°

C

0.2

0.2

MHz

BOM

Maximum output-

VO(PP) = 2 V, 

AV = 1,

25

°

C

30

30

kHz

BOM

swing bandwidth

O(PP)

,

RL = 50 k

‡,

V

,

CL = 100 pF ‡

25

°

C

30

30

kHz

φ

m

Phase margin at

unity gain

RL = 50 k

‡,

CL = 100 pF ‡

25

°

C

63

°

63

°

Gain margin

L

,

L

25

°

C

15

15

dB

† Full range is – 40

°

C to 125

°

C.

‡ Referenced to 2.5 V

background image

TLV225x, TLV225xA

Advanced LinCMOS

 RAIL-TO-RAIL

VERY LOW-POWER OPERATIONAL AMPLIFIERS

SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999

14

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TLV2252Q, and TLV2252M electrical characteristics at specified free-air temperature, V

DD

 = 3 V

(unless otherwise noted)

PARAMETER

TEST CONDITIONS

TA†

TLV2252Q,

TLV2252M

TLV2252AQ,

TLV2252AM

UNIT

A

MIN

TYP

MAX

MIN

TYP

MAX

VIO

Input offset voltage

V

1

V

V

0

25

°

C

200

1500

200

850

µ

V

VIO

In ut offset voltage

V

1

V

V

0

Full range

1750

1000

µ

V

α

VIO

Temperature coefficient

V

1

V

V

0

25

°

C

0 5

0 5

µ

V/

°

C

α

VIO

of input offset voltage

V

1

V

V

0

to 85

°

C

0.5

0.5

µ

V/

°

C

Input offset voltage

long-term drift

(see Note 4)

VDD

±

 = 

±

1.5 V,

VO = 0,

VIC = 0, 

RS = 50 

25

°

C

0.003

0.003

µ

V/mo

IIO

Input offset current

25

°

C

0.5

0.5

pA

IIO

In ut offset current

125

°

C

500

500

A

IIB

Input bias current

25

°

C

1

1

pA

IIB

In ut bias current

125

°

C

500

500

A

0

– 0.3

0

– 0.3

25

°

C

to

to

to

to

VICR

Common-mode input

RS = 50

|

VIO

| ≤

5 mV

2

2.2

2

2.2

V

VICR

voltage range

RS = 50 

Ω,

|

VIO 

|  ≤

5 mV

0

0

V

Full range

to

to

1.7

1.7

IOH = – 20 

µ

A

25

°

C

2.98

2.98

VOH

High-level output

IOH = – 75

µ

A

25

°

C

2.9

2.9

V

VOH

g

voltage

IOH = – 75 

µ

A

Full range

2.8

2.8

V

IOH = – 150 

µ

A

25

°

C

2.8

2.8

VIC = 1.5 V,

IOL =  50 

µ

A

25

°

C

10

10

Low level output

VIC = 1 5 V

IOL = 500

µ

A

25

°

C

100

150

100

150

VOL

Low-level output

voltage

VIC = 1.5 V,

IOL =  500 

µ

A

Full range

165

165

mV

voltage

VIC = 1 5 V

IOL = 1

m

A

25

°

C

200

300

200

300

VIC = 1.5 V,

IOL =  1 

m

A

Full range

300

300

Large signal differential

V

1 5 V

RL 100 k

25

°

C

100

250

100

250

AVD

Large-signal differential

voltage amplification

VIC = 1.5 V,

VO = 1 V to 2 V

RL = 100 k

Full range

10

10

V/mV

voltage am lification

VO = 1 V to 2 V

RL = 1 M

25

°

C

800

800

ri(d)

Differential input

resistance

25

°

C

1012

1012

ri(c)

Common-mode input

resistance

25

°

C

1012

1012

ci(c)

Common-mode input

capacitance

f = 10 kHz,

P package

25

°

C

8

8

pF

zo

Closed-loop output

impedance

f = 25 kHz,

AV = 10

25

°

C

220

220

CMRR

Common-mode rejection

VIC = 0 to 1.7 V, VO = 1.5 V, 

25

°

C

65

75

65

77

dB

CMRR

j

ratio

IC

RS = 50

O

Full range

60

60

dB

kSVR

Supply voltage rejection

VDD =  2.7 V to 8 V,

25

°

C

80

95

80

100

dB

kSVR

y

g

j

ratio (

VDD  /

VIO)

DD

VIC = VDD /2, No 

load

Full range

80

80

dB

IDD

Supply current

VO = 1 5 V

No load

25

°

C

68

125

68

125

µ

A

IDD

Supply current

VO = 1.5 V,

No load

Full range

150

150

µ

A

† Full range is – 40

°

C to 125

°

C for Q level part, – 55

°

C to 125

°

C for M level part.

‡ Referenced to 1.5 V

NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150

°

C extrapolated

to TA = 25

°

C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

background image

TLV225x, TLV225xA

Advanced LinCMOS

 RAIL-TO-RAIL

VERY LOW-POWER OPERATIONAL AMPLIFIERS

SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999

15

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TLV2252Q, and TLV2252M operating characteristics at specified free-air temperature, V

DD

 = 3 V

PARAMETER

TEST CONDITIONS

TA†

TLV2252Q,

TLV2252M

TLV2252AQ,

TLV2252AM

UNIT

A

MIN

TYP

MAX

MIN

TYP

MAX

25

°

C

0 07

0 1

0 07

0 1

VO = 0 8 V to 1 4 V

RL = 100 k

25

°

C

0.07

0.1

0.07

0.1

SR

Slew rate at unity gain

VO = 0.8 V to 1.4 V,

CL = 100 pF‡

RL = 100 k

‡,

Full

0 05

0 05

V/

µ

s

CL = 100  F‡

range

0.05

0.05

V

Equivalent input noise

f = 10 Hz

25

°

C

35

35

nV/

Hz

Vn

q

voltage

f = 1 kHz

25

°

C

19

19

nV/

Hz

VN(PP)

Peak-to-peak

equivalent input

f = 0.1 Hz to 1 Hz

25

°

C

0.6

0.6

µ

V

VN(PP) equivalent input

noise voltage

f = 0.1 Hz to 10 Hz

25

°

C

1.1

1.1

µ

V

In

Equivalent input noise

current

25

°

C

0.6

0.6

fA /

Hz

Gain-bandwidth

f = 1  kHz, 

RL = 50 k

‡,

25

°

C

0 187

0 187

MHz

product

f   1  kHz, 

CL = 100 pF‡

RL   50 k

,

25

°

C

0.187

0.187

MHz

BOM

Maximum

output swing

VO(PP) = 1 V, 

AV = 1,

25

°

C

60

60

kHz

BOM

output-swing

bandwidth

O(PP)

,

RL = 50 k

‡,

V

,

CL = 100 pF‡

25

°

C

60

60

kHz

φ

m

Phase margin at unity

gain

RL = 50 k

‡,

CL = 100 pF‡

25

°

C

63

°

63

°

Gain margin

L

,

L

25

°

C

15

15

dB

† Full range is – 40

°

C to 125

°

C for Q level part, – 55

°

C to 125

°

C for M level part.

‡ Referenced to 1.5 V

background image

TLV225x, TLV225xA

Advanced LinCMOS

 RAIL-TO-RAIL

VERY LOW-POWER OPERATIONAL AMPLIFIERS

SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999

16

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TLV2252Q, and TLV2252M electrical characteristics at specified free-air temperature, V

DD

 = 5 V

(unless otherwise noted)

PARAMETER

TEST CONDITIONS

TA†

TLV2252Q,

TLV2252M

TLV2252AQ,

TLV2252AM

UNIT

A

MIN

TYP

MAX

MIN

TYP

MAX

VIO

Input offset voltage

V

2

V

V

0

25

°

C

200

1500

200

850

µ

V

VIO

Input offset voltage

V

2

V

V

0

Full range

1750

1000

µ

V

α

VIO

Temperature coefficient

V

2

V

V

0

25

°

C

0 5

0 5

µ

V/

°

C

α

VIO

of input offset voltage

V

2

V

V

0

to 85

°

C

0.5

0.5

µ

V/

°

C

Input offset voltage long-

term drift (see Note 4)

VDD

±

 = 

±

2.5 V,

VO = 0,

VIC = 0,

RS = 50 

25

°

C

0.003

0.003

µ

V/mo

IIO

Input offset current

25

°

C

0.5

0.5

pA

IIO

Input offset current

125

°

C

500

500

pA

IIB

Input bias current

25

°

C

1

1

pA

IIB

Input bias current

125

°

C

500

500

pA

VICR

Common-mode input

|

VIO

| ≤

5 mV

RS = 50

25

°

C

0

to

4

– 0.3

to

4.2

0

to

4

– 0.3

to

4.2

V

VICR

voltage range

|

VIO 

|  ≤

5 mV,

RS = 50 

Full range

0

to

3.5

0

to

3.5

V

IOH = – 20 

µ

A

25

°

C

4.98

4.98

VOH

High level output voltage

IOH = 75

µ

A

25

°

C

4.9

4.94

4.9

4.94

V

VOH

High-level output voltage

IOH = – 75 

µ

A

Full range

4.8

4.8

V

IOH = – 150 

µ

A

25

°

C

4.8

4.88

4.8

4.88

VIC = 2.5 V,

IOL =  50 

µ

A

25

°

C

0.01

0.01

VIC = 2 5 V

IOL = 500

µ

A

25

°

C

0.09

0.15

0.09

0.15

VOL

Low-level output voltage

VIC = 2.5 V,

IOL =  500 

µ

A

Full range

0.15

0.15

V

VIC = 2 5 V

IOL = 1

m

A

25

°

C

0.2

0.3

0.2

0.3

VIC = 2.5 V,

IOL =  1 

m

A

Full range

0.3

0.3

L

i

l diff

ti l

V

2 5 V

RL 100 k

25

°

C

100

350

100

350

AVD

Large-signal differential

voltage amplification

VIC = 2.5 V,

VO = 1 V to 4 V

RL = 100 k

Full range

10

10

V/mV

voltage am lification

VO = 1 V to 4 V

RL = 1 M

25

°

C

1700

1700

ri(d)

Differential input

resistance

25

°

C

1012

1012

ri(c)

Common-mode input

resistance

25

°

C

1012

1012

ci(c)

Common-mode input

capacitance

f = 10 kHz,

P package

25

°

C

8

8

pF

zo

Closed-loop output

impedance

f = 25 kHz,

AV = 10

25

°

C

200

200

CMRR

Common-mode rejection

VIC = 0 to 2.7 V,

25

°

C

70

83

70

83

dB

CMRR

j

ratio

IC

,

VO = 2.5 V, 

RS = 50

Full range

70

70

dB

kSVR

Supply voltage rejection

VDD = 4.4 V to 8 V,

25

°

C

80

95

80

95

dB

kSVR

y

g

j

ratio (

VDD /

VIO)

DD

VIC = VDD /2, No 

load

Full range

80

80

dB

† Full range is – 40

°

C to 125

°

C for Q level part, – 55

°

C to 125

°

C for M level part.

‡ Referenced to 2.5 V

NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150

°

C extrapolated

to TA = 25

°

C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

background image

TLV225x, TLV225xA

Advanced LinCMOS

 RAIL-TO-RAIL

VERY LOW-POWER OPERATIONAL AMPLIFIERS

SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999

17

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TLV2252Q, and TLV2252M electrical characteristics at specified free-air temperature, V

DD

 = 5 V

(unless otherwise noted) (continued)

PARAMETER

TEST CONDITIONS

TA†

TLV2252Q,

TLV2252M

TLV2252AQ,

TLV2252AM

UNIT

A

MIN

TYP

MAX

MIN

TYP

MAX

IDD

Supply current

VO = 2 5 V

No load

25

°

C

70

125

70

125

µ

A

IDD

Supply current

VO = 2.5 V,

No load

Full range

150

150

µ

A

† Full range is – 40

°

C to 125

°

C for Q level part, – 55

°

C to 125

°

C for M level part.

TLV2252Q, and TLV2252M operating characteristics at specified free-air temperature, V

DD

 = 5 V

PARAMETER

TEST CONDITIONS

TA†

TLV2252Q,

TLV2252M

TLV2252AQ,

TLV2252AM

UNIT

A

MIN

TYP

MAX

MIN

TYP

MAX

V

1 25 V t 2 75 V

25

°

C

0 07

0 12

0 07

0 12

VO = 1.25 V to 2.75 V,

25

°

C

0.07

0.12

0.07

0.12

SR

Slew rate at unity gain

RL = 100 k

‡,

C

100 F‡

Full

0 05

0 05

V/

µ

s

CL = 100 pF‡

range

0.05

0.05

V

Equivalent input noise

f = 10 Hz

25

°

C

36

36

nV/

Hz

Vn

q

voltage

f = 1 kHz

25

°

C

19

19

nV/

Hz

VN(PP)

Peak-to-peak

equivalent input

f = 0.1 Hz to 1 Hz

25

°

C

0.7

0.7

µ

V

VN(PP)

equivalent input

noise voltage

f = 0.1 Hz to 10 Hz

25

°

C

1.1

1.1

µ

V

In

Equivalent input noise

current

25

°

C

0.6

0.6

fA /

Hz

THD + N

Total harmonic

VO = 0.5 V to 2.5 V,

f = 20 kHz

AV = 1

25

°

C

0.2%

0.2%

THD + N

distortion plus noise

f = 20  kHz,

RL = 50 k

AV = 10

25

°

C

1%

1%

Gain bandwidth product

f = 50  kHz,

RL = 50 k

‡,

25

°

C

0 2

0 2

MHz

Gain-bandwidth product

,

CL = 100 pF‡

L

,

25

°

C

0.2

0.2

MHz

BOM

Maximum output-swing

VO(PP) = 2 V, 

AV = 1,

25

°

C

30

30

kHz

BOM

g

bandwidth

O(PP)

,

RL = 50 k

‡,

V

,

CL = 100 pF‡

25

°

C

30

30

kHz

φ

m

Phase margin at unity

gain

RL = 50 k

‡,

CL = 100 pF‡

25

°

C

63

°

63

°

Gain margin

L

,

L

25

°

C

15

15

dB

† Full range is – 40

°

C to 125

°

C for Q level part, – 55

°

C to 125

°

C for M level part.

‡ Referenced to 2.5 V

background image

TLV225x, TLV225xA

Advanced LinCMOS

 RAIL-TO-RAIL

VERY LOW-POWER OPERATIONAL AMPLIFIERS

SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999

18

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TLV2254Q, and TLV2254M electrical characteristics at specified free-air temperature, V

DD

 = 3 V

(unless otherwise noted)

PARAMETER

TEST CONDITIONS

TA†

TLV2254Q,

TLV2254M

TLV2254AQ,

TLV2254AM

UNIT

A

MIN

TYP

MAX

MIN

TYP

MAX

VIO

Input offset voltage

25

°

C

200

1500

200

850

µ

V

VIO

Input offset voltage

Full range

1750

1000

µ

V

α

VIO

Temperature coefficient

25

°

C

0 5

0 5

µ

V/

°

C

α

VIO

of input offset voltage

to 125

°

C

0.5

0.5

µ

V/

°

C

Input offset voltage

long-

term drift (see Note 4)

VDD

±

 = 

±

1.5 V,

VO = 0,

VIC = 0,

RS = 50 

25

°

C

0.003

0.003

µ

V/mo

IIO

Input offset current

25

°

C

0.5

0.5

pA

IIO

Input offset current

125

°

C

500

500

pA

IIB

Input bias current

25

°

C

1

1

pA

IIB

Input bias current

125

°

C

500

500

pA

0

– 0.3

0

– 0.3

25

°

C

to

to

to

to

VICR

Common-mode input

RS = 50

|

VIO

| ≤

5 mV

2

2.2

2

2.2

V

VICR

voltage range

RS = 50 

Ω,

|

VIO 

|  ≤

5 mV

0

0

V

Full range

to

to

g

1.7

1.7

IOH = – 20 

µ

A

25

°

C

2.98

2.98

VOH

High-level output

IOH = 75

µ

A

25

°

C

2.9

2.9

V

VOH

g

voltage

IOH = – 75 

µ

A

Full range

2.8

2.8

V

IOH = – 150 

µ

A

25

°

C

2.8

2.8

VIC = 1.5 V,

IOL =  50 

µ

A

25

°

C

10

10

Low level output

VIC = 1 5 V

IOL = 500

µ

A

25

°

C

100

150

100

150

VOL

Low-level output

voltage

VIC = 1.5 V,

IOL =  500 

µ

A

Full range

165

165

mV

voltage

VIC = 1 5 V

IOL = 1

m

A

25

°

C

200

300

200

300

VIC = 1.5 V,

IOL =  1 

m

A

Full range

300

300

Large signal differential

V

1 5 V

RL 100 k

25

°

C

100

225

100

225

AVD

Large-signal differential

voltage amplification

VIC = 1.5 V,

VO = 1 V to 2 V

RL = 100 k

Full range

10

10

V/mV

VD

voltage am lification

VO = 1 V to 2 V

RL = 1 M

25

°

C

800

800

ri(d)

Differential input

resistance

25

°

C

1012

1012

ri(c)

Common-mode input

resistance

25

°

C

1012

1012

ci(c)

Common-mode input

capacitance

f = 10 kHz,

N package

25

°

C

8

8

pF

zo

Closed-loop output

impedance

f = 25 kHz,

AV = 10

25

°

C

220

220

CMRR

Common-mode

VIC = 0 to 1.7 V, VO = 1.5 V, 

25

°

C

65

75

65

77

dB

CMRR

rejection ratio

IC

RS = 50

O

Full range

60

60

dB

kSVR

Supply voltage  

rejection ratio

VDD =  2.7 V to 8 V,

25

°

C

80

95

80

100

dB

kSVR

rejection ratio

(

VDD /

VIO)

DD

VIC = VDD /2, No 

load

Full range

80

80

dB

† Full range is – 40

°

C to 125

°

C for Q level part, – 55

°

C to 125

°

C for M level part.

‡ Referenced to 1.5 V

NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150

°

C extrapolated

to TA = 25

°

C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

background image

TLV225x, TLV225xA

Advanced LinCMOS

 RAIL-TO-RAIL

VERY LOW-POWER OPERATIONAL AMPLIFIERS

SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999

19

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TLV2254Q, and TLV2254M electrical characteristics at specified free-air temperature, V

DD

 = 3 V

(unless otherwise noted) (continued)

PARAMETER

TEST CONDITIONS

TA†

TLV2254Q,

TLV2254M

TLV2254AQ,

TLV2254AM

UNIT

A

MIN

TYP

MAX

MIN

TYP

MAX

IDD

Supply current

VO = 1 5 V

No load

25

°

C

135

250

135

250

µ

A

IDD

y

(four amplifiers)

VO = 1.5 V,

No load

Full range

300

300

µ

A

† Full range is – 40

°

C to 125

°

C for Q level part, – 55

°

C to 125

°

C for M level part.

TLV2254Q, and TLV2254M operating characteristics at specified free-air temperature, V

DD

 = 3 V

PARAMETER

TEST CONDITIONS

TA†

TLV2254Q,

TLV2254M

TLV2254AQ,

TLV2254AM

UNIT

A

MIN

TYP

MAX

MIN

TYP

MAX

SR

Slew rate at unity gain

VO = 0.5 V to 1.7 V,

RL = 100 k

25

°

C

0.07

0.1

0.07

0.1

V/

µ

s

SR

Slew rate at unity gain

RL = 100 k

‡,

C

100 F‡

Full range

0 05

0 05

V/

µ

s

CL = 100 pF‡

Full range

0.05

0.05

V

Equivalent input noise voltage

f = 10 Hz

25

°

C

35

35

nV/

Hz

Vn

Equivalent input noise voltage

f = 1 kHz

25

°

C

19

19

nV/

Hz

VN(PP)

Peak-to-peak equivalent input

f = 0.1 Hz to 1 Hz

25

°

C

0.6

0.6

µ

V

VN(PP)

q

noise voltage

f = 0.1 Hz to 10 Hz

25

°

C

1.1

1.1

µ

V

In

Equivalent input noise current

25

°

C

0.6

0.6

fA /

Hz

Gain bandwidth product

f = 1  kHz, 

RL 50 k

25

°

C

0 187

0 187

MHz

Gain-bandwidth product

RL = 50 k

‡,

CL = 100 pF ‡

25

°

C

0.187

0.187

MHz

BOM

Maximum output-swing

VO(PP) = 1 V,

AV = 1,

25

°

C

60

60

kHz

BOM

g

bandwidth

V

,

RL = 50 k

‡,

CL = 100 pF ‡

25

°

C

60

60

kHz

φ

m

Phase margin at unity gain

RL = 50 k

‡,

25

°

C

63

°

63

°

Gain margin

L

,

CL = 100 pF ‡

25

°

C

15

15

dB

† Full range is – 40

°

C to 125

°

C for Q level part, – 55

°

C to 125

°

C for M level part.

‡ Referenced to 1.5 V

background image

TLV225x, TLV225xA

Advanced LinCMOS

 RAIL-TO-RAIL

VERY LOW-POWER OPERATIONAL AMPLIFIERS

SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999

20

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TLV2254Q, and TLV2254M electrical characteristics at specified free-air temperature, V

DD

 = 5 V

(unless otherwise noted)

PARAMETER

TEST CONDITIONS

TA†

TLV2254Q,

TLV2254M

TLV2254AQ,

TLV2254AM

UNIT

A

MIN

TYP

MAX

MIN

TYP

MAX

VIO

Input offset voltage

25

°

C

200

1500

200

850

µ

V

VIO

Input offset voltage

Full range

1750

1000

µ

V

α

VIO

Temperature coefficient

25

°

C

0 5

0 5

µ

V/

°

C

α

VIO

of input offset voltage

to 125

°

C

0.5

0.5

µ

V/

°

C

Input offset voltage

long-term drift

(see Note 4)

VDD

±

 = 

±

2.5 V,

VO = 0,

VIC = 0, 

RS = 50 

25

°

C

0.003

0.003

µ

V/mo

IIO

Input offset current

25

°

C

0.5

0.5

pA

IIO

Input offset current

125

°

C

500

500

pA

IIB

Input bias current

25

°

C

1

1

pA

IIB

Input bias current

125

°

C

500

500

pA

0

– 0.3

0

– 0.3

25

°

C

to

to

to

to

VICR

Common-mode input

|

VIO

| ≤

5 mV

RS = 50

4

4.2

4

4.2

V

VICR

voltage range

|

VIO 

| ≤

5 mV,

RS = 50 

0

0

V

Full range

to

to

g

3.5

3.5

IOH = – 20 

µ

A

25

°

C

4.98

4.98

VOH

High-level output

IOH = 75

µ

A

25

°

C

4.9

4.94

4.9

4.94

V

VOH

g

voltage

IOH = – 75 

µ

A

Full range

4.8

4.8

V

IOH = – 150 

µ

A

25

°

C

4.8

4.88

4.8

4.88

VIC = 2.5 V,

IOL =  50 

µ

A

25

°

C

0.01

0.01

Low level output

VIC = 2 5 V

IOL = 500

µ

A

25

°

C

0.09

0.15

0.09

0.15

VOL

Low-level output

voltage

VIC = 2.5 V,

IOL =  500 

µ

A

Full range

0.15

0.15

V

voltage

VIC = 2 5 V

IOL

1

m

A

25

°

C

0.2

0.3

0.2

0.3

VIC = 2.5 V,

IOL =  1 

m

A

Full range

0.3

0.3

Large signal differential

V

2 5 V

RL 100 k

25

°

C

100

350

100

350

AVD

Large-signal differential

voltage amplification

VIC = 2.5 V,

VO = 1 V to 4 V

RL = 100 k

Full range

10

10

V/mV

VD

voltage am lification

VO = 1 V to 4 V

RL = 1 M

25

°

C

1700

1700

ri(d)

Differential input

resistance

25

°

C

1012

1012

ri(c)

Common-mode input

resistance

25

°

C

1012

1012

ci(c)

Common-mode input

capacitance

f = 10 kHz,

N package

25

°

C

8

8

pF

zo

Closed-loop output

impedance

f = 25 kHz,

AV = 10

25

°

C

200

200

CMRR

Common-mode

VIC = 0 to 2.7 V, VO = 2.5 V, 

25

°

C

70

83

70

83

dB

CMRR

rejection ratio

IC

RS = 50

O

Full range

70

70

dB

kSVR

Supply voltage

rejection ratio

VDD = 4.4 V to 8 V,

25

°

C

80

95

80

95

dB

kSVR

rejection ratio

(

VDD /

VIO)

DD

,

VIC = VDD /2, No 

load

Full range

80

80

dB

† Full range is – 40

°

C to 125

°

C for Q level part, – 55

°

C to 125

°

C for M level part.

‡ Referenced to 2.5 V

NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150

°

C extrapolated

to TA = 25

°

C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

background image

TLV225x, TLV225xA

Advanced LinCMOS

 RAIL-TO-RAIL

VERY LOW-POWER OPERATIONAL AMPLIFIERS

SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999

21

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TLV2254Q, and TLV2254M electrical characteristics at specified free-air temperature, V

DD

 = 5 V

(unless otherwise noted) (continued)

PARAMETER

TEST CONDITIONS

TA†

TLV2254Q,

TLV2254M

TLV2254AQ,

TLV2254AM

UNIT

A

MIN

TYP

MAX

MIN

TYP

MAX

IDD

Supply current

VO = 2 5 V

No load

25

°

C

140

250

140

250

µ

A

IDD

y

(four amplifiers)

VO = 2.5 V,

No load

Full range

300

300

µ

A

† Full range is – 40

°

C to 125

°

C for Q level part, – 55

°

C to 125

°

C for M level part.

TLV2254Q, and TLV2254M operating characteristics at specified free-air temperature, V

DD

 = 5 V

PARAMETER

TEST CONDITIONS

TA†

TLV2254Q,

TLV2254M

TLV2254AQ,

TLV2254AM

UNIT

A

MIN

TYP

MAX

MIN

TYP

MAX

Slew rate at unity

VO = 0 5 V to 3 5 V

RL 100 k

25

°

C

0.07

0.12

0.07

0.12

SR

Slew rate at unity

gain

VO = 0.5 V to 3.5 V,

CL = 100 pF ‡

RL = 100 k

‡,

Full

0 05

0 05

V/

µ

s

gain

CL = 100  F ‡

range

0.05

0.05

V

Equivalent input

f = 10 Hz

25

°

C

36

36

nV/

Hz

Vn

q

noise voltage

f = 1 kHz

25

°

C

19

19

nV/

Hz

VN(PP)

Peak-to-peak

equivalent input

f = 0.1 Hz to 1 Hz

25

°

C

0.7

0.7

µ

V

VN(PP)

equivalent input

noise voltage

f = 0.1 Hz to 10 Hz

25

°

C

1.1

1.1

µ

V

In

Equivalent input

noise current

25

°

C

0.6

0.6

fA /

Hz

THD + N

Total harmonic

distortion plus

VO = 0.5 V to 2.5 V,

f = 20 kHz

AV = 1

25

°

C

0.2%

0.2%

THD + N

distortion plus

noise

f = 20  kHz,

RL = 50 k

AV = 10

25

°

C

1%

1%

Gain-bandwidth

f = 50  kHz, 

RL = 50 k

‡,

25

°

C

0 2

0 2

MHz

product

,

CL = 100 pF ‡

L

,

25

°

C

0.2

0.2

MHz

BOM

Maximum output-

VO(PP) = 2 V,

AV = 1,

25

°

C

30

30

kHz

BOM

swing bandwidth

O(PP)

,

RL = 50 k

‡,

V

,

CL = 100 pF ‡

25

°

C

30

30

kHz

φ

m

Phase margin at

unity gain

RL = 50 k

‡,

CL = 100 pF ‡

25

°

C

63

°

63

°

Gain margin

L

,

L

25

°

C

15

15

dB

† Full range is – 40

°

C to 125

°

C for Q level part, – 55

°

C to 125

°

C for M level part.

‡ Referenced to 2.5 V

background image

TLV225x, TLV225xA

Advanced LinCMOS

 RAIL-TO-RAIL

VERY LOW-POWER OPERATIONAL AMPLIFIERS

SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999

22

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Table of Graphs

FIGURE

VIO

Input offset voltage

Distribution

vs Common-mode voltage

2 – 5

6, 7

α

VIO

Input offset voltage temperature coefficient

Distribution

8 – 11

IIB /IIO

Input bias and input offset currents

vs Free-air temperature

12

VI

Input voltage

vs Supply voltage

vs Free-air temperature

13

14

VOH

High-level output voltage

vs High-level output current

15, 18

VOL

Low-level output voltage

vs Low-level output current

16, 17, 19

VO(PP)

Maximum peak-to-peak output voltage

vs Frequency

20

IOS

Short-circuit output current

vs Supply voltage

vs Free-air temperature

21

22

VID

Differential input voltage

vs Output voltage

23, 24

AVD

Differential voltage amplification

vs Load resistance

25

AVD

Large-signal differential voltage amplification

vs Frequency

vs Free-air temperature

26, 27

28, 29

zo

Output impedance

vs Frequency

30, 31

CMRR

Common-mode rejection ratio

vs Frequency

vs Free-air temperature

32

33

kSVR

Supply-voltage rejection ratio

vs Frequency

vs Free-air temperature

34, 35

36

IDD

Supply current

vs Supply voltage

37, 38

SR

Slew rate

vs Load capacitance

vs Free-air temperature

39

40

VO

Inverting large-signal pulse response

41, 42

VO

Voltage-follower large-signal pulse response

43, 44

VO

Inverting small-signal pulse response

45, 46

VO

Voltage-follower small-signal pulse response

47, 48

Vn

Equivalent input noise voltage

vs Frequency

49, 50

Input noise voltage

Over a 10-second period

51

Integrated noise voltage

vs Frequency

52

THD + N

Total harmonic distortion plus noise

vs Frequency

53

Gain-bandwidth product

vs Supply voltage

vs Free-air temperature

54

55

φ

m

Phase margin

vs Frequency

vs Load capacitance

26, 27

56

Gain margin

vs Load capacitance

57

B1

Unity-gain bandwidth

vs Load capacitance

58

Overestimation of phase margin

vs Load capacitance

59

background image

TLV225x, TLV225xA

Advanced LinCMOS

 RAIL-TO-RAIL

VERY LOW-POWER OPERATIONAL AMPLIFIERS

SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999

23

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 2

Precentage of 

Amplifiers – %

DISTRIBUTION OF TLV2252

INPUT OFFSET VOLTAGE

VIO – Input Offset Voltage – mV

10

5

0

20

15

– 1.6

– 0.8

0

0.8

1.6

1020 Amplifiers From 1 Wafer Lot

VDD = 

±

1.5 V

TA = 25

°

C

Figure 3

Precentage of 

Amplifiers – %

DISTRIBUTION OF TLV2252

INPUT OFFSET VOLTAGE

VIO – Input Offset Voltage – mV

10

5

0

20

15

– 1.6

– 0.8

0

0.8

1.6

1020 Amplifiers From 1 Wafer Lot

VDD = 

±

2.5 V

TA = 25

°

C

Figure 4

Percentage of 

Amplifiers – %

DISTRIBUTION OF TLV2254

INPUT OFFSET VOLTAGE

VIO – Input Offset Voltage – mV

15

10

5

0

20

35

– 1.6

– 0.8

0

0.8

1.6

25

30

682 Amplifiers From 1 Wafer Lot

VDD

±

±

1.5 V

TA = 25

°

C

Figure 5

Percentage of 

Amplifiers – %

DISTRIBUTION OF TLV2254

INPUT OFFSET VOLTAGE

VIO – Input Offset Voltage – mV

20

10

5

0

25

35

– 1.6

– 0.8

0

0.8

1.6

682 Amplifiers From 1 Wafer Lot

VDD

±

±

2.5 V

TA = 25

°

C

15

30

background image

TLV225x, TLV225xA

Advanced LinCMOS

 RAIL-TO-RAIL

VERY LOW-POWER OPERATIONAL AMPLIFIERS

SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999

24

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 6

– Input Offset V

oltage – mV

INPUT OFFSET VOLTAGE

vs

COMMON-MODE INPUT VOLTAGE

ÁÁ

ÁÁ

V

IO

VIC – Common-Mode Input Voltage – V

1

0.8

0.6

0.4

0.2

0

– 0.2

– 0.4

– 0.6

– 0.8

– 1

– 1

0

1

2

VDD = 3 V

RS = 50 

TA = 25

°

C

3

Figure 7

– Input Offset V

oltage – mV

INPUT OFFSET VOLTAGE

vs

COMMON-MODE INPUT VOLTAGE

ÁÁ

ÁÁ

V

IO

VIC – Common-Mode Input Voltage – V

1

0.8

0.6

0.4

0.2

0

– 0.2

– 0.4

– 0.6

– 0.8

– 1

– 1

0

1

2

3

4

5

VDD = 5 V

RS = 50 

TA = 25

°

C

Figure 8

DISTRIBUTION OF TLV2252 INPUT OFFSET

VOLTAGE TEMPERATURE COEFFICIENT

Percentage of 

Amplifiers – %

α

VIO – Temperature Coefficient – 

µ

V /

°

C

15

10

5

0

20

25

– 2

– 1

0

1

2

62 Amplifiers From 1 Wafer Lot

VDD

±

 = 

±

1.5 V

P Package

TA = 25

°

C to 85

°

C

Figure 9

DISTRIBUTION OF TLV2252 INPUT OFFSET

VOLTAGE TEMPERATURE COEFFICIENT

Percentage of 

Amplifiers – %

α

VIO – Temperature Coefficient – 

µ

V /

°

C

15

10

5

0

20

25

– 2

– 1

0

1

2

62 Amplifiers From 1 Wafer Lot

VDD

±

 = 

±

2.5 V

P Package

TA = 25

°

C to 85

°

C

† For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.

background image

TLV225x, TLV225xA

Advanced LinCMOS

 RAIL-TO-RAIL

VERY LOW-POWER OPERATIONAL AMPLIFIERS

SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999

25

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 10

DISTRIBUTION OF TLV2254 INPUT OFFSET

VOLTAGE TEMPERATURE COEFFICIENT

Percentage of 

Amplifiers – %

α

VIO – Temperature Coefficient

of Input Offset Voltage – 

µ

V /

°

C

10

5

0

20

15

25

– 2

– 1

0

1

2

62 Amplifiers From 1 Wafer Lot

VDD

±

 = 

±

1.5 V

P Package

TA = 25

°

C to 85

°

C

Figure 11

DISTRIBUTION OF TLV2254 INPUT OFFSET

VOLTAGE TEMPERATURE COEFFICIENT

Percentage of 

Amplifiers – %

α

VIO – Temperature Coefficient

of Input Offset Voltage – 

µ

V /

°

C

10

5

0

20

15

25

– 2

– 1

0

1

2

62 Amplifiers From 1 Wafer Lot

VDD

±

 = 

±

2.5 V

P Package

TA = 25

°

C to 85

°

C

Figure 12

IIB and IIO – Input Bias and Input Offset Currents – pA

INPUT BIAS AND INPUT OFFSET CURRENTS

vs

FREE-AIR TEMPERATURE

I IB

I IO

TA – Free-Air Temperature – 

°

C

20

15

25

45

65

25

30

35

85

IIB

IIO

10

5

0

105

125

VDD

±

 = 

±

2.5 V

VIC = 0 

VO = 0

RS = 50 

Figure 13

0

2

1

1.5

2

2.5

– Input V

oltage  – V

1

0.5

1.5

INPUT VOLTAGE

vs

SUPPLY VOLTAGE

2.5

3

3.5

4

– 0.5

– 1

– 1.5

– 2

– 2.5

RS = 50 

TA = 25

°

C

| VIO | 

5 mV

ÁÁ

ÁÁ

V

I

| VDD

±

 | – Supply Voltage – V

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

background image

TLV225x, TLV225xA

Advanced LinCMOS

 RAIL-TO-RAIL

VERY LOW-POWER OPERATIONAL AMPLIFIERS

SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999

26

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 14

– Input V

oltage – V

INPUT VOLTAGE

†‡

vs

FREE-AIR TEMPERATURE

ÁÁ

V

I

TA – Free-Air Temperature – 

°

C

2

1

0

3

4

5

– 1

– 55 – 35 – 15

5

25

45

65

85

| VIO | 

5 mV

VDD = 5 V

105

125

Figure 15

– High-Level Output V

oltage – V

HIGH-LEVEL OUTPUT VOLTAGE

†‡

vs

HIGH-LEVEL OUTPUT CURRENT

ÁÁ

ÁÁ

ÁÁ

V

OH

| IOH | – High-Level Output Current – 

µ

A

2

1.5

1

0

0

200

400

2.5

3

600

800

VDD = 3 V

TA = – 40

°

C

TA = 25

°

C

TA = 85

°

C

0.5

TA = 125

°

C

Figure 16

0.6

0.4

0.2

0

0

1

2

3

– Low-Level Output V

oltage – V

0.8

1

LOW-LEVEL OUTPUT VOLTAGE

vs

LOW-LEVEL OUTPUT CURRENT

1.2

4

5

ÁÁ

ÁÁ

V

OL

IOL – Low-Level Output Current – mA

VDD = 3 V

TA = 25

°

C

VIC = 0

VIC = 0.75 V

VIC = 1.5 V

Figure 17

– Low-Level Output V

oltage – V

LOW-LEVEL OUTPUT VOLTAGE

†‡

vs

LOW-LEVEL OUTPUT CURRENT

ÁÁ

ÁÁ

V

OL

IOL – Low-Level Output Current – mA

0.4

0.2

1.2

0

0

1

2

3

0.8

0.6

1

1.4

4

5

TA = 85

°

C

TA = – 40

°

C

TA = 25

°

C

TA = 125

°

C

VDD = 3 V

VIC = 1.5 V

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

‡ For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.

background image

TLV225x, TLV225xA

Advanced LinCMOS

 RAIL-TO-RAIL

VERY LOW-POWER OPERATIONAL AMPLIFIERS

SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999

27

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 18

– High-Level Output V

oltage – V

HIGH-LEVEL OUTPUT VOLTAGE

†‡

vs

HIGH-LEVEL OUTPUT CURRENT

ÁÁ

ÁÁ

V

OH

| IOH | – High-Level Output Current – 

µ

A

3

2

1

0

0

200

400

4

5

600

800

VDD = 5 V

TA = – 40

°

C

TA = 25

°

C

TA = 125

°

C

TA = 85

°

C

Figure 19

– Low-Level Output V

oltage – V

LOW-LEVEL OUTPUT VOLTAGE

†‡

vs

LOW-LEVEL OUTPUT CURRENT

ÁÁ

ÁÁ

V

OL

IOL – Low-Level Output Current – mA

0.6

0.4

0.2

0

0

1

2

3

1

1.2

1.4

4

5

6

0.8

VDD = 5 V

VIC = 2.5 V

TA = – 40

°

C

TA = 85

°

C

TA = 25

°

C

TA = 125

°

C

Figure 20

– Maximum Peak-to-Peak Output V

oltage – V

f – Frequency – Hz

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE

vs

FREQUENCY

ÁÁ

ÁÁ

ÁÁ

V

O(PP)

4

2

1

5

3

0

10 2

10 3

10 4

10 5

RI = 50 k

TA = 25

°

C

VDD = 5 V

VDD = 3 V

Figure 21

– Short-Circuit Output Current – mA

SHORT-CIRCUIT OUTPUT CURRENT

vs

SUPPLY VOLTAGE

I OS

 

VDD – Supply Voltage – V

5

3

1

2

3

4

5

7

8

10

6

7

8

9

6

4

2

0

– 1

VID = – 100 mV

VID = 100 mV

VO = VDD/2

TA = 25

°

C

VIC = VDD/2

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

‡ For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.

background image

TLV225x, TLV225xA

Advanced LinCMOS

 RAIL-TO-RAIL

VERY LOW-POWER OPERATIONAL AMPLIFIERS

SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999

28

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 22

– Short-Circuit Output Current – mA

SHORT-CIRCUIT OUTPUT CURRENT

vs

FREE-AIR TEMPERATURE

I OS

 

TA – Free-Air Temperature – 

°

C

11

10

9

8

7

6

5

4

3

2

1

0

– 1

– 50

– 25

0

25

50

75

100

VID = – 100 mV

VID = 100 mV

VO = 2.5 V

VDD = 

±

5 V

– 75

125

Figure 23

0

800

0

0.5

1

1.5

– Differential Input V

oltage – 

400

200

600

DIFFERENTIAL INPUT VOLTAGE

vs

OUTPUT VOLTAGE

1000

2

2.5

3

– 200

– 400

– 600

– 800

– 1000

VDD = 3 V

RI = 50 k

VIC = 1.5 V

TA = 25

°

C

V

ID

V

µ

VO – Output Voltage – V

Figure 24

0

800

0

1

3

– Differential Input V

oltage – 

400

200

600

DIFFERENTIAL INPUT VOLTAGE

vs

OUTPUT VOLTAGE

1000

2

4

5

– 200

– 400

– 600

– 800

– 1000

V

ID

V

µ

VO – Output Voltage – V

VDD = 5 V

VIC = 2.5 V

RL = 50 k

TA = 25

°

C

Figure 25

DIFFERENTIAL VOLTAGE AMPLIFICATION

†‡

vs

LOAD RESISTANCE

RL – Load Resistance – k

– Differential V

oltage 

Amplification 

– 

V/mV

ÁÁ

ÁÁ

A

VD

1

101

10 2

10 3

10 2

101

1

10 3

10 4

VO(PP) = 2 V

TA = 25

°

C

VDD = 5 V

VDD = 3 V

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

‡ For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.

background image

TLV225x, TLV225xA

Advanced LinCMOS

 RAIL-TO-RAIL

VERY LOW-POWER OPERATIONAL AMPLIFIERS

SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999

29

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

 

om – Phase Margin 

φ

m

f – Frequency – Hz

LARGE-SIGNAL DIFFERENTIAL VOLTAGE

AMPLIFICATION AND PHASE MARGIN

vs

FREQUENCY

A

VD – Large-Signal Differential

ÁÁ

ÁÁ

ÁÁ

A

VD

V

oltage 

Amplification – dB

20

80

60

40

0

– 20

– 40

10 3

10 4

10 5

10 6

10 7

180

°

135

°

90

°

45

°

0

°

– 45

°

– 90

°

Gain

VDD = 5 V

RL = 50 k

CL= 100 pF

TA = 25

°

C

Phase Margin

Figure 26

om – Phase Margin 

φ

m

f – Frequency – Hz

LARGE-SIGNAL DIFFERENTIAL VOLTAGE

AMPLIFICATION AND PHASE MARGIN

vs

FREQUENCY

A

VD – Large-Signal Differential

ÁÁ

ÁÁ

ÁÁ

A

VD

V

oltage 

Amplification – dB

20

80

60

40

0

– 20

– 40

10 3

10 4

10 5

10 6

10 7

180

°

135

°

90

°

45

°

0

°

– 45

°

– 90

°

Gain

VDD = 3 V

RL= 50 k

CL= 100 pF

TA = 25

°

C

Phase Margin

Figure 27

† For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.

background image

TLV225x, TLV225xA

Advanced LinCMOS

 RAIL-TO-RAIL

VERY LOW-POWER OPERATIONAL AMPLIFIERS

SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999

30

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 28

LARGE-SIGNAL DIFFERENTIAL

†‡

VOLTAGE AMPLIFICATION

vs

FREE-AIR TEMPERATURE

TA – Free-Air Temperature – 

°

C

– Large-Signal Differential V

oltage 

A

VD

Amplification – V/mV

– 50

– 25

0

25

50

75

100

RL = 50 k

RL = 1 M

10 4

10 3

10 2

101

VDD = 3 V

VIC = 1.5 V

VO = 0.5 V to 2.5 V

– 75

125

Figure 29

LARGE-SIGNAL DIFFERENTIAL

†‡

VOLTAGE AMPLIFICATION

vs

FREE-AIR TEMPERATURE

TA – Free-Air Temperature – 

°

C

– Large-Signal Differential V

oltage 

A

VD

Amplification – V/mV

– 50

– 25

0

25

50

75

100

125

VDD = 5 V

VIC = 2.5 V

VO = 1 V to 4 V

RL = 50 k

RL = 1 M

10 4

10 3

10 2

101

– 75

Figure 30

– Output Impedance – 

f– Frequency – Hz

OUTPUT IMPEDANCE

vs

FREQUENCY

z

o

10

1

0.1

1000

100

10 2

10 3

10 4

10 5

10 6

AV = 100

AV = 10

AV = 1

VDD = 3 V

TA = 25

°

C

Figure 31

– Output Impedance – 

f– Frequency – Hz

OUTPUT IMPEDANCE

vs

FREQUENCY

z

o

10

1

0.1

1000

100

10 2

10 3

10 4

10 5

10 6

AV = 100

AV = 10

AV = 1

VDD = 5 V

TA = 25

°

C

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

‡ For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.

background image

TLV225x, TLV225xA

Advanced LinCMOS

 RAIL-TO-RAIL

VERY LOW-POWER OPERATIONAL AMPLIFIERS

SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999

31

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 32

CMRR – Common-Mode Rejection Ratio – dB

f – Frequency – Hz

COMMON-MODE REJECTION RATIO

vs

FREQUENCY

80

40

20

0

100

60

10 1

10 2

10 3

10 4

10 5

10 6

VDD = 5 V

VIC = 2.5 V

VDD = 3 V

VIC = 1.5 V

TA = 25

°

C

Figure 33

CMMR – Common-Mode Rejection Ratio – dB

COMMON-MODE REJECTION RATIO

†‡

vs

FREE-AIR TEMPERATURE

TA – Free-Air Temperature – 

°

C

86

82

80

92

84

90

88

94

VDD = 5 V

VDD = 3 V

– 50

– 25

0

25

50

75

100

– 75

125

Figure 34

– 

Supply-V

oltage Rejection Ratio – dB

f – Frequency – Hz

SUPPLY-VOLTAGE REJECTION RATIO

vs

FREQUENCY

ÁÁ

ÁÁ

ÁÁ

k

SVR

60

40

20

100

80

0

– 20

kSVR –

kSVR +

10 1

10 2

10 3

10 4

10 5

10 6

VDD = 3 V

TA = 25

°

C

Figure 35

– 

Supply-V

oltage Rejection Ratio – dB

f – Frequency – Hz

SUPPLY-VOLTAGE REJECTION RATIO

vs

FREQUENCY

ÁÁ

ÁÁ

ÁÁ

k

SVR

100

80

60

40

20

0

– 20

101

10 2

10 3

10 4

10 5

10 6

VDD = 5 V

TA = 25

°

C

kSVR –

kSVR +

‡ Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

† For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.

background image

TLV225x, TLV225xA

Advanced LinCMOS

 RAIL-TO-RAIL

VERY LOW-POWER OPERATIONAL AMPLIFIERS

SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999

32

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 36

– 

Supply-V

oltage Rejection Ratio – dB

SUPPLY-VOLTAGE REJECTION RATIO

vs

FREE-AIR TEMPERATURE

Á

Á

k

SVR

TA – Free-Air Temperature – 

°

C

100

95

90

105

110

– 50

– 25

0

25

50

75

100

VDD = 2.7 V to 8 V

VIC = VO = VDD  / 2

125

– 75

Figure 37

– Supply Current – 

A

µ

ÁÁ

ÁÁ

I DD

60

40

20

0

0

1

2

3

4

5

80

100

120

6

7

8

VDD – Supply Voltage – V

VO = 0 

No Load

TA = 25

°

C

TA = 85

°

C

TA = – 40

°

C

TLV2252

SUPPLY CURRENT

vs

SUPPLY VOLTAGE

Figure 38

– Supply Current – 

A

µ

ÁÁ

ÁÁ

ÁÁ

I DD

120

80

40

0

0

1

2

3

4

5

160

200

240

6

7

8

| VDD

±

 | – Supply Voltage – V

VO = 0 

No Load

TA = 25

°

C

TA = 85

°

C

TA = – 40

°

C

TLV2254

SUPPLY CURRENT

vs

SUPPLY VOLTAGE

Figure 39

SR – Slew Rate –

SLEW RATE

vs

LOAD CAPACITANCE

CL – Load Capacitance – pF

s

µ

V/

0.16

0.08

0.04

0

0.2

0.12

101

10 2

10 3

10 4

VDD = 5 V

AV = – 1

TA = 25

°

C

SR –

0.18

0.14

0.1

0.06

0.02

SR +

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

‡ For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.

background image

TLV225x, TLV225xA

Advanced LinCMOS

 RAIL-TO-RAIL

VERY LOW-POWER OPERATIONAL AMPLIFIERS

SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999

33

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 40

SR – Slew Rate –

SLEW RATE

†‡

vs

FREE-AIR TEMPERATURE

s

µ

V/

TA – Free-Air Temperature – 

°

C

0.08

0.04

0

0.12

0.16

0.2

– 50

– 25

0

25

50

75

100

SR –

SR +

VDD = 5 V

RL = 50 k

CL = 100 pF

A V = 1

– 75

125

Figure 41

 – Output V

oltage 

– 

V

INVERTING LARGE-SIGNAL PULSE

RESPONSE

V

O

t – Time – 

µ

s

1.5

1

0.5

0

0

10

20

30

40

50

60

2

2.5

3

70

80

90

100

A V = – 1

TA = 25

°

C

VDD = 3 V

RL = 50 k

CL = 100  pF

Figure 42

INVERTING LARGE-SIGNAL PULSE

RESPONSE

t – Time – 

µ

s

 – Output V

oltage 

– 

V

V

O

2

1

0

0

10

20

30

40

50

60

3

4

5

70

80

90

100

VDD = 5 V

RL = 50 k

CL = 100 pF

AV = – 1

TA = 25

°

C

Figure 43

VOLTAGE-FOLLOWER LARGE-SIGNAL

PULSE RESPONSE

 – Output V

oltage 

– 

V

V

O

t – Time – 

µ

s

1.5

1

0.5

0

0

10

20

30

40

50

60

2

2.5

3

70

80

90

100

A V =  1

TA = 25

°

C

VDD = 3 V

RL = 50 k

CL = 100  pF

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

‡ For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.

background image

TLV225x, TLV225xA

Advanced LinCMOS

 RAIL-TO-RAIL

VERY LOW-POWER OPERATIONAL AMPLIFIERS

SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999

34

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 44

VOLTAGE-FOLLOWER LARGE-SIGNAL

PULSE RESPONSE

 – Output V

oltage 

– 

V

V

O

t – Time – 

µ

s

2

1

0

0

10

20

30

40

50

60

3

4

5

70

80

90

100

VDD = 5 V

RL = 50 k

CL = 100 pF

AV = 1

TA = 25

°

C

Figure 45

INVERTING SMALL-SIGNAL

PULSE RESPONSE

 – Output V

oltage 

– 

V

V

O

t – Time – 

µ

s

0.7

0.65

0.9

0.6

0

10

20

30

0.8

0.75

0.85

0.95

40

50

VDD = 3 V

RL = 50 k

CL = 100  pF

AV = – 1

TA = 25

°

C

Figure 46

VO – Output V

oltage 

– 

V

INVERTING SMALL-SIGNAL

PULSE RESPONSE

V

O

t – Time – 

µ

s

2.5

2.45

2.4

0

10

20

30

2.55

2.6

2.65

40

50

VDD = 5 V

RL = 50 k

CL = 100 pF

AV = – 1

TA = 25

°

C

Figure 47

VOLTAGE-FOLLOWER SMALL-SIGNAL

PULSE RESPONSE

VO – Output V

oltage 

– 

V

V

O

t – Time – 

µ

s

0.8

0.75

0.6

0

10

20

30

0.85

0.9

0.95

40

50

0.7

0.65

VDD = 3 V

RL = 50 k

CL = 100  pF

AV =  1

TA = 25

°

C

† For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.

background image

TLV225x, TLV225xA

Advanced LinCMOS

 RAIL-TO-RAIL

VERY LOW-POWER OPERATIONAL AMPLIFIERS

SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999

35

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 48

VOLTAGE-FOLLOWER SMALL-SIGNAL

PULSE RESPONSE

VO – Output V

oltage 

– 

V

V

O

t – Time – 

µ

s

2.5

2.45

2.4

0

10

20

30

2.55

2.6

2.65

40

50

VDD = 5 V

RL = 50 k

CL = 100 pF

AV = 1

TA = 25

°

C

Figure 49

– Equivalent Input Noise V

oltage –

f – Frequency – Hz

EQUIVALENT INPUT NOISE VOLTAGE

vs

FREQUENCY

V

n

nV/

Hz

40

30

20

0

60

50

10

10 1

10 2

10 3

10 4

VDD = 3 V

RS = 20 

TA = 25

°

C

Figure 50

– Equivalent Input Noise V

oltage –

f – Frequency – Hz

EQUIVALENT INPUT NOISE VOLTAGE

vs

FREQUENCY

V

n

nV/

Hz

40

20

10

0

60

30

50

101

10 2

10 3

10 4

VDD = 5 V

RS = 20 

TA = 25

°

C

Figure 51

Noise V

oltage – nV

t – Time – s

INPUT NOISE VOLTAGE OVER

A 10-SECOND PERIOD

0

2

4

6

0

750

1000

8

10

500

– 250

– 500

– 750

– 1000

250

VDD = 5 V

f = 0.1 Hz to 10 Hz

TA = 25

°

C

† For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.

background image

TLV225x, TLV225xA

Advanced LinCMOS

 RAIL-TO-RAIL

VERY LOW-POWER OPERATIONAL AMPLIFIERS

SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999

36

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 52

Integrated Noise V

oltage –

f – Frequency – Hz

INTEGRATED NOISE VOLTAGE

vs

FREQUENCY

V

µ

0.1

1

10

100

1

101

10 2

10 3

10 4

10 5

Calculated Using Ideal Pass-Band Filter

Low Frequency = 1 Hz

TA = 25

°

C

Figure 53

THD 

– 

T

otal Harmonic Distortion Plus Noise – %

f – Frequency – Hz

TOTAL HARMONIC DISTORTION PLUS NOISE

vs

FREQUENCY

0.01

1

0.001

101

10 2

10 3

10 4

10 5

AV = 10

AV = 1

VDD = 5 V

RL = 50 k

TA = 25

°

C

0.1

AV = 100

Figure 54

Gain-Bandwidth Product – kHz

GAIN-BANDWIDTH PRODUCT

vs

SUPPLY VOLTAGE

VDD  – Supply Voltage – V

200

190

180

170

0

2

3

5

210

220

7

8

1

4

6

Figure 55

Gain-Bandwidth Product – kHz

GAIN-BANDWIDTH PRODUCT

†‡

vs

FREE-AIR TEMPERATURE

TA – Free-Air Temperature – 

°

C

220

140

100

260

300

– 50 – 25

0

25

50

100

75

180

VDD = 5 V

f = 10 kHz

RL = 50 kHz

CL = 100 pF

125

– 75

† For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.

background image

TLV225x, TLV225xA

Advanced LinCMOS

 RAIL-TO-RAIL

VERY LOW-POWER OPERATIONAL AMPLIFIERS

SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999

37

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 56

om – Phase Margin

PHASE MARGIN

vs

LOAD CAPACITANCE

CL – Load Capacitance – pF

m

φ

101

10 2

10 3

10 4

75

°

60

°

45

°

30

°

15

°

0

°

Rnull = 200 

Rnull = 500 

Rnull = 50 

Rnull = 0

TA = 25

°

C

Rnull = 100 

Rnull = 10 

50 k

50 k

VDD –

VDD +

Rnull

CL

VI

+

Figure 57

Gain Margin – dB

GAIN MARGIN

vs

LOAD CAPACITANCE

CL – Load Capacitance – pF

20

10

5

0

15

101

10 2

10 3

10 5

Rnull = 100 

TA = 25

°

C

Rnull = 50 

10 4

Rnull = 500 

Rnull = 200 

Rnull = 0

Rnull = 10 

Figure 58

– Unity-Gain Bandwidth – kHz

UNITY-GAIN BANDWIDTH

vs

LOAD CAPACITANCE

CL – Load Capacitance – pF

ÁÁ

ÁÁ

B

1

150

25

100

0

200

125

175

50

75

101

10 2

10 3

10 4

10 5

TA = 25

°

C

† See application information

Figure 59

Overestimation of Phase Margin

OVERESTIMATION OF PHASE MARGIN

vs

LOAD CAPACITANCE

CL – Load Capacitance – pF

15

10

5

0

20

25

101

10 2

10 3

10 4

10 5

TA = 25

°

C

Rnull = 100 

Rnull = 50 

Rnull = 10 

Rnull = 500 

Rnull = 200 

‡ Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

† For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.

background image

TLV225x, TLV225xA

Advanced LinCMOS

 RAIL-TO-RAIL

VERY LOW-POWER OPERATIONAL AMPLIFIERS

SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999

38

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

APPLICATION INFORMATION

driving large capacitive loads

The TLV2252 is designed to drive larger capacitive loads than most CMOS operational amplifiers. Figure 56

and Figure 57 illustrate its ability to drive loads up to 1000 pF while maintaining good gain and phase margins

(R

null

 = 0).

A smaller series resistor (R

null

) at the output of the device (see Figure 60) improves the gain and phase margins

when driving large capacitive loads. Figure 55 and Figure 56 show the effects of adding series resistances of

10 

, 50 

, 100 

, 200 

, and 500 

. The addition of this series resistor has two effects: the first adds a zero

to the transfer function and the second reduces the frequency of the pole associated with the output load in the

transfer function.

The zero introduced to the transfer function is equal to the series resistance times the load capacitance. To

calculate the improvement in phase margin, equation 1 can be used.

∆φ

m1

+

tan

–1

ǒ

2

× π ×

UGB

W

×

R

null

×

C

L

Ǔ

∆φ

m1

+

improvement in phase margin

UGBW

+

unity-gain bandwidth frequency

R

null

+

output series resistance

C

L

+

load capacitance

(1)

Where :

The unity-gain bandwidth (UGBW) frequency decreases as the capacitive load increases (see Figure 58). To

use equation 1, UGBW must be approximated from Figure 58.

Using equation 1 alone overestimates the improvement in phase margin as illustrated in Figure 59. The

overestimation is caused by the decrease in the frequency of the pole associated with the load, providing

additional phase shift and reducing the overall improvement in phase margin.

Using Figure 60, with equation 1 enables the designer to choose the appropriate output series resistance to

optimize the design of circuits driving large capacitance loads.

50 k

50 k

VDD – / GND

VDD +

Rnull

CL

VI

+

Figure 60. Series-Resistance Circuit

background image

TLV225x, TLV225xA

Advanced LinCMOS

 RAIL-TO-RAIL

VERY LOW-POWER OPERATIONAL AMPLIFIERS

SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999

39

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

APPLICATION INFORMATION

macromodel information

Macromodel information provided was derived using Microsim

Parts

, the model generation software used

with Microsim

 PSpice

. The Boyle macromodel (see Note 5) and subcircuit in Figure 61 are generated using

the TLV2252 typical electrical and operating characteristics at T

A

 = 25

°

C. Using this information, output

simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):

D

Maximum positive output voltage swing

D

Maximum negative output voltage swing

D

Slew rate

D

Quiescent power dissipation

D

Input bias current

D

Open-loop voltage amplification

D

Unity-gain frequency

D

Common-mode rejection ratio

D

Phase margin

D

DC output resistance

D

AC output resistance

D

Short-circuit output current limit

NOTE  5: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers,” 

IEEE Journal

of Solid-State Circuits, SC-9, 353 (1974).

OUT

+

+

+

+

+

+

+

+

+

.SUBCKT TLV225x 1 2 3 4 5

C1

11

12

6.369E–12

C2

6

7

25.00E–12

DC

5

53

DX

DE

54

5

DX

DLP

90

91

DX

DLN

92

90

DX

DP

4

3

DX

EGND

99

0

POLY (2) (3,0) (4,0) 0 .5 .5

FB

7

99

POLY (5) VB VC VE VLP

+ VLN 0 57.62E6 –60E6 60E6 60E6 –60E6

GA

6

0

11

12 26.86E–6

GCM 0

6

10

99 

2.686E–9

ISS

3

10

DC 3.1E–6

HLIM

90

0

VLIM 1K

J1

11

2

10 JX

J2

12

1

10 JX

R2

6

9

100.0E3

RD1

60

11

37.23E3

RD2

60

12

37.23E3

R01

8

5

84

R02

7

99

84

RP

3

4

71.43E3

RSS

10

99

64.52E6

VAD

60

4

–.5

VB

9

0

DC 0

VC 3 

53

DC 

.605

VE

54

4

DC .605

VLIM

7

8

DC 0

VLP

91

0

DC –0.235

VLN

0

92

DC 7.5

.MODEL DX D (IS=800.0E–18)

.MODEL JX PJF (IS=500.0E–15 BETA=139E–6

+ VTO=–.05)

.ENDS

VCC +

RP

IN –

2

IN +

1

VCC –

VAD

RD1

11

J1

J2

10

RSS

ISS

3

12

RD2

60

VE

54

DE

DP

VC

DC

4

C1

53

R2

6

9

EGND

VB

FB

C2

GCM

GA

VLIM

8

5

RO1

RO2

HLIM

90

DLP

91

DLN

92

VLN

VLP

99

7

Figure 61. Boyle Macromodel and Subcircuit

PSpice and Parts are trademarks of MicroSim Corporation.

background image

TLV225x, TLV225xA

Advanced LinCMOS

 RAIL-TO-RAIL

VERY LOW-POWER OPERATIONAL AMPLIFIERS

SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999

40

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

MECHANICAL INFORMATION

D (R-PDSO-G**)    

PLASTIC SMALL-OUTLINE PACKAGE

14 PIN SHOWN

4040047 / D 10/96

0.228 (5,80)

0.244 (6,20)

0.069 (1,75) MAX

0.010 (0,25)

0.004 (0,10)

1

14

0.014 (0,35)

0.020 (0,51)

A

0.157 (4,00)

0.150 (3,81)

7

8

0.044 (1,12)

0.016 (0,40)

Seating Plane

0.010 (0,25)

PINS **

0.008 (0,20) NOM

A  MIN

A  MAX

DIM

Gage Plane

0.189

(4,80)

(5,00)

0.197

8

(8,55)

(8,75)

0.337

14

0.344

(9,80)

16

0.394

(10,00)

0.386

0.004 (0,10)

M

0.010 (0,25)

0.050 (1,27)

0

°

– 8

°

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-012

background image

TLV225x, TLV225xA

Advanced LinCMOS

 RAIL-TO-RAIL

VERY LOW-POWER OPERATIONAL AMPLIFIERS

SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999

41

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

MECHANICAL INFORMATION

FK (S-CQCC-N**)     

LEADLESS CERAMIC CHIP CARRIER

4040140 / D 10/96

28 TERMINAL SHOWN

B

0.358

(9,09)

MAX

(11,63)

0.560

(14,22)

0.560

0.458

0.858

(21,8)

1.063

(27,0)

(14,22)

A

NO. OF

MIN

MAX

0.358

0.660

0.761

0.458

0.342

(8,69)

MIN

(11,23)

(16,26)

0.640

0.739

0.442

(9,09)

(11,63)

(16,76)

0.962

1.165

(23,83)

0.938

(28,99)

1.141

(24,43)

(29,59)

(19,32)

(18,78)

**

20

28

52

44

68

84

0.020 (0,51)

TERMINALS

0.080 (2,03)

0.064 (1,63)

(7,80)

0.307

(10,31)

0.406

(12,58)

0.495

(12,58)

0.495

(21,6)

0.850

(26,6)

1.047

0.045 (1,14)

0.045 (1,14)

0.035 (0,89)

0.035 (0,89)

0.010 (0,25)

12

13

14

15

16

18

17

11

10

8

9

7

5

4

3

2

0.020 (0,51)

0.010 (0,25)

6

1

28

26

27

19

21

B SQ

A SQ

22

23

24

25

20

0.055 (1,40)

0.045 (1,14)

0.028 (0,71)

0.022 (0,54)

0.050 (1,27)

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. This package can be hermetically sealed with a metal lid.

D. The terminals are gold plated.

E. Falls within JEDEC MS-004

background image

TLV225x, TLV225xA

Advanced LinCMOS

 RAIL-TO-RAIL

VERY LOW-POWER OPERATIONAL AMPLIFIERS

SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999

42

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

MECHANICAL INFORMATION

J (R-GDIP-T**)    

CERAMIC DUAL-IN-LINE PACKAGE

4040083 / B 04/95

14 PIN SHOWN

22

0.410

(10,41)

0.390

(28,00)

1.100

(9,91)

0.388

(9,65)

20

18

16

14

PINS **

0.310

(7,87)

0.290

0.755

(19,18)

(19,94)

0.785

(7,37)

0.310

(7,87)

(7,37)

0.290

(23,10)

0.910

0.300

(7,62)

(6,22)

0.245

A

0.300

(7,62)

(6,22)

0.245

0.290

(7,87)

0.310

0.785

(19,94)

(19,18)

0.755

(7,37)

A  MIN

A  MAX

B  MAX

B  MIN

0.245

(6,22)

(7,11)

0.280

C  MIN

C  MAX

DIM

0.245

(6,22)

(7,62)

0.300

0.975

(24,77)

(23,62)

0.930

0.290

(7,37)

(7,87)

0.310

Seating Plane

0.014 (0,36)

0.008 (0,20)

C

8

7

0.020 (0,51) MIN

B

0.070 (1,78)

0.100 (2,54)

0.065 (1,65)

0.045 (1,14)

14

1

0.015 (0,38)

0.023 (0,58)

0.200 (5,08) MAX

0.130 (3,30) MIN

0.100 (2,54)

0

°

– 15

°

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. This package can be hermetically sealed with a ceramic lid using glass frit.

D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.

E.  Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18, GDIP1-T20, and GDIP1-T22.

background image

TLV225x, TLV225xA

Advanced LinCMOS

 RAIL-TO-RAIL

VERY LOW-POWER OPERATIONAL AMPLIFIERS

SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999

43

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

MECHANICAL INFORMATION

JG (R-GDIP-T8)  

CERAMIC DUAL-IN-LINE PACKAGE

0.310 (7,87)

0.290 (7,37)

0.014 (0,36)

0.008 (0,20)

Seating Plane

4040107/C 08/96

5

4

0.065 (1,65)

0.045 (1,14)

8

1

0.020 (0,51) MIN

0.400 (10,20)

0.355 (9,00)

0.015 (0,38)

0.023 (0,58)

0.063 (1,60)

0.015 (0,38)

0.200 (5,08) MAX

0.130 (3,30) MIN

0.245 (6,22)

0.280 (7,11)

0.100 (2,54)

0

°

–15

°

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. This package can be hermetically sealed with a ceramic lid using glass frit.

D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.

E. Falls within MIL-STD-1835 GDIP1-T8

background image

TLV225x, TLV225xA

Advanced LinCMOS

 RAIL-TO-RAIL

VERY LOW-POWER OPERATIONAL AMPLIFIERS

SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999

44

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

MECHANICAL INFORMATION

N (R-PDIP-T**)   

PLASTIC DUAL-IN-LINE PACKAGE

20

0.975

(24,77)

0.940

(23,88)

18

0.920

0.850

14

0.775

0.745

(19,69)

(18,92)

16

0.775

(19,69)

(18,92)

0.745

A  MIN

DIM

A  MAX

PINS **

0.310 (7,87)

0.290 (7,37)

(23.37)

(21.59)

Seating Plane

0.010 (0,25) NOM

14/18 PIN ONLY

4040049/C 08/95

9

8

0.070 (1,78) MAX

A

0.035 (0,89) MAX

0.020 (0,51) MIN

16

1

0.015 (0,38)

0.021 (0,53)

0.200 (5,08) MAX

0.125 (3,18) MIN

0.240 (6,10)

0.260 (6,60)

M

0.010 (0,25)

0.100 (2,54)

0

°

– 15

°

16 PIN SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Falls within JEDEC MS-001 (20 pin package is shorter then MS-001.)

background image

TLV225x, TLV225xA

Advanced LinCMOS

 RAIL-TO-RAIL

VERY LOW-POWER OPERATIONAL AMPLIFIERS

SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999

45

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

MECHANICAL INFORMATION

P (R-PDIP-T8)  

PLASTIC DUAL-IN-LINE PACKAGE

4040082 / B 03/95

0.310 (7,87)

0.290 (7,37)

0.010 (0,25) NOM

0.400 (10,60)

0.355 (9,02)

5

8

4

1

0.020 (0,51) MIN

0.070 (1,78) MAX

0.240 (6,10)

0.260 (6,60)

0.200 (5,08) MAX

0.125 (3,18) MIN

0.015 (0,38)

0.021 (0,53)

Seating Plane

M

0.010 (0,25)

0.100 (2,54)

0

°

– 15

°

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Falls within JEDEC MS-001

background image

TLV225x, TLV225xA

Advanced LinCMOS

 RAIL-TO-RAIL

VERY LOW-POWER OPERATIONAL AMPLIFIERS

SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999

46

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

MECHANICAL INFORMATION

PW (R-PDSO-G**)   

PLASTIC SMALL-OUTLINE PACKAGE

4040064 / E 08/96

14 PIN SHOWN

Seating Plane

1,20 MAX

1

A

7

14

0,19

4,50

4,30

8

6,20

6,60

0,30

0,75

0,50

0,25

Gage Plane

0,15 NOM

0,65

M

0,10

0

°

– 8

°

0,10

PINS **

A  MIN

A  MAX

DIM

2,90

3,10

8

4,90

5,10

14

6,60

6,40

4,90

5,10

16

7,70

20

7,90

24

9,60

9,80

28

0,15

0,05

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

background image

TLV225x, TLV225xA

Advanced LinCMOS

 RAIL-TO-RAIL

VERY LOW-POWER OPERATIONAL AMPLIFIERS

SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999

47

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

MECHANICAL INFORMATION

U (S-GDFP-F10)   

CERAMIC DUAL FLATPACK

4040179 / B 03/95

1.000 (25,40)

0.080 (2,03)

0.250 (6,35)

0.250 (6,35)

0.019 (0,48)

0.025 (0,64)

0.300 (7,62)

0.045 (1,14)

0.006 (0,15)

0.050 (1,27)

0.015 (0,38)

0.005 (0,13)

0.026 (0,66)

0.004 (0,10)

0.246 (6,10)

0.750 (19,05)

1

10

5

6

0.250 (6,35)

0.350 (8,89)

0.350 (8,89)

0.250 (6,35)

0.050 (1,27)

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. This package can be hermetically sealed with a ceramic lid using glass frit.

D. Index point is provided on cap for terminal identification only.

E. Falls within MIL STD 1835 GDFP1-F10 and JEDEC MO-092AA

background image

TLV225x, TLV225xA

Advanced LinCMOS

 RAIL-TO-RAIL

VERY LOW-POWER OPERATIONAL AMPLIFIERS

SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999

48

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

MECHANICAL INFORMATION

W (R-GDFP-F16)   

CERAMIC DUAL FLATPACK

0.235 (5,97)

0.355 (9,02)

0.355 (9,02)

0.235 (5,97)

9

8

16

1

0.745 (18,92)

0.245 (6,22)

0.004 (0,10)

0.026 (0,66)

0.015 (0,38)

0.015 (0,38)

0.045 (1,14)

0.371 (9,42)

0.006 (0,15)

0.045 (1,14)

Base and Seating Plane

0.025 (0,64)

0.019 (0,48)

0.440 (11,18)

0.285 (7,24)

0.085 (2,16)

1.025 (26,04)

4040180-3 / B 03/95

0.275 (6,99)

0.305 (7,75)

0.050 (1,27)

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. This package can be hermetically sealed with a ceramic lid using glass frit.

D. Index point is provided on cap for terminal identification only.

E. Falls within MIL-STD-1835 GDFP1-F16 and JEDEC MO-092AC

background image

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue

any product or service without notice, and advise customers to obtain the latest version of relevant information

to verify, before placing orders, that information being relied on is current and complete. All products are sold

subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those

pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in

accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent

TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily

performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF

DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL

APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR

WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER

CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO

BE FULLY AT THE CUSTOMER’S RISK.

In order to minimize risks associated with the customer’s applications, adequate design and operating

safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent

that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other

intellectual property right of TI covering or relating to any combination, machine, or process in which such

semiconductor products or services might be or are used. TI’s publication of information regarding any third

party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

Copyright 

©

 1999, Texas Instruments Incorporated