background image

TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y

EXCALIBUR LOW-NOISE HIGH-SPEED

PRECISION OPERATIONAL AMPLIFIERS

SLOS192 – FEBRUARY 1997

1

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

D

Outstanding Combination of dc Precision

and AC Performance:

Unity-Gain Bandwidth . . . 15 MHz Typ

V

n

3.3 nV/

Hz at f = 10 Hz Typ,

. . . . 

2.5 nV/

Hz at f = 1 kHz Typ

V

IO

25 

µ

V Max

. . . . 

A

VD

45 V/

µ

V Typ With R

L

 = 2 k

,

. . . 

19 V/

µ

V Typ With R

L

 = 600 

D

Available in Standard-Pinout Small-Outline

Package

D

Output Features Saturation Recovery

Circuitry

D

Macromodels and Statistical information

     

description

The TLE20x7 and TLE20x7A contain innovative

circuit design expertise and high-quality process

control techniques to produce a level of ac

performance and dc precision previously unavail-

able in single operational amplifiers. Manufac-

tured using Texas Instruments state-of-the-art

Excalibur process, these devices allow upgrades

to systems that use lower-precision devices.

In the area of dc precision, the TLE20x7 and

TLE20x7A offer maximum offset voltages of

100 

µ

V and 25 

µ

V, respectively, common-mode

rejection ratio of 131 dB (typ), supply voltage

rejection ratio of 144 dB (typ), and dc gain of

45 V/

µ

V (typ).

AVAILABLE OPTIONS

PACKAGED DEVICES

CHIP

TA

VIOmax AT

25

°

C

SMALL

OUTLINE†

(D)

CHIP

CARRIER

(FK)

CERAMIC

DIP

(JG)

PLASTIC

DIP

(P)

CHIP

FORM‡

(Y)

0

°

C to 70

°

C

25 

µ

V

TLE2027ACD

TLE2037ACD

TLE2027ACP

TLE2037ACP

TLE2027Y

TLE2037Y

0

°

C to 70

°

C

100 

µ

V

TLE2027CD

TLE2037CD

TLE2027CP

TLE2037CP

TLE2027Y

TLE2037Y

40

°

C to 105

°

C

25 

µ

V

TLE2027AID

TLE2037AID

TLE2027AIP

TLE2037AIP

– 40

°

C to 105

°

C

100 

µ

V

TLE2027ID

TLE2037ID

TLE2027IP

TLE2037IP

– 55

°

C to 125

°

C

25 

µ

V

TLE2027AMD

TLE2037AMD

TLE2027AMFK

TLE2037AMFK

TLE2027AMJG

TLE2037AMJG

TLE2027AMP

TLE2037AMP

– 55 C to 125 C

100 

µ

V

TLE2027MD

TLE2037MD

TLE2027MFK

TLE2037MFK

TLE2027MJG

TLE2037MJG

TLE2027MP

TLE2037MP

† The D packages are available taped and reeled. Add R suffix to device type (e.g., TLE2027ACDR).

‡ Chip forms are tested at 25

°

C only.

Copyright 

©

 1997, Texas Instruments Incorporated

PRODUCTION DATA information is current as of publication date.

Products conform to specifications per the terms of Texas Instruments

standard warranty. Production processing does not necessarily include

testing of all parameters.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of

Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

1

2

3

4

8

7

6

5

OFFSET N1

IN –

IN +

V

CC –

OFFSET N2

V

CC +

OUT

NC

D, JG, OR P PACKAGE

(TOP VIEW)

3

2

1 20 19

9 10 11 12 13

4

5

6

7

8

18

17

16

15

14

NC

V

CC +

NC

OUT

NC

NC

IN –

NC

IN +

NC

FK PACKAGE

(TOP VIEW)

NC

OFFSET

 N1

NC

NC

NC

NC

NC

NC

OFFSET

 N2

CC

V

background image

TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y

EXCALIBUR LOW-NOISE HIGH-SPEED

PRECISION OPERATIONAL AMPLIFIERS

SLOS192 – FEBRUARY 1997

2

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

description (continued)

The ac performance of the TLE2027 and TLE2037 is highlighted by a typical unity-gain bandwidth specification

of 15 MHz, 55

°

 of phase margin, and noise voltage specifications of 3.3 nV/

Hz and 2.5 nV/

Hz at frequencies

of 10 Hz and 1 kHz respectively. The TLE2037 and TLE2037A have been decompensated for faster slew rate

(–7.5 V/

µ

s, typical) and wider bandwidth (50 MHz). To ensure stability, the TLE2037 and TLE2037A should be

operated with a closed-loop gain of 5 or greater.

Both the TLE20x7 and TLE20x7A are available in a wide variety of packages, including the industry-standard

8-pin small-outline version for high-density system applications. The C-suffix devices are characterized for

operation from 0

°

C to 70

°

C. The I-suffix devices are characterized for operation from – 40

°

C to 105

°

C. The

M-suffix devices are characterized for operation over the full military temperature range of – 55

°

C to 125

°

C.

symbol

OUT

OFFSET N2

IN –

IN +

OFFSET N1

+

background image

TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y

EXCALIBUR LOW-NOISE HIGH-SPEED

PRECISION OPERATIONAL AMPLIFIERS

SLOS192 – FEBRUARY 1997

3

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TLE202xY chip information

This chip, when properly assembled, displays characteristics similar to the TLE202xC. Thermal compression

or ultrasonic bonding may be used on the doped-aluminum bonding pads. The chip may be mounted with

conductive epoxy or a gold-silicon preform.

BONDING PAD ASSIGNMENTS

CHIP THICKNESS: 15 MILS TYPICAL

BONDING PADS: 4 

×

 4 MILS MINIMUM

TJmax = 150

°

C

TOLERANCES ARE 

±

10%.

ALL DIMENSIONS ARE IN MILS.

PIN (4) IS INTERNALLY CONNECTED

TO BACKSIDE OF CHIP.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

90

73

(1)

(2)

(3)

(4)

(6)

(7)

(8)

+

OUT

  IN +

 IN –

VCC+

VCC –

OFFSET N1

OFFSET N2

(1)

(3)

(2)

(8)

(7)

(4)

(6)

background image

TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y

, TLE2037Y

SLOS192 – FEBRUAR

Y

 1997

T

emp

late 

R

e

lease 

D

ate: 

7

11

94

EXCALIBUR LOW

-NOISE HIGH-SPEED

PRECISION OPERA

TIONAL

 AMPLIFIERS

4

POST

 OFFICE BOX 655303     DALLAS, 

TEXAS 

75265

equivalent schematic

IN –

IN +

R24 R26

Q57

Q56

Q55

Q60

OUT

Q62

Q59

Q61

Q58

R25

Q48

Q54

Q53

Q52

Q49

Q50

R23

R22

R21

R20

Q46

Q42

R19

Q47

Q44

Q43

Q40

Q45

Q41

Q39

Q38

Q37

Q35

R15

Q36

R16

R17

C4

C3

R13

Q34

Q33

Q32

R9

Q27

Q30

R8

R11

Q25 Q28

C2

Q31

Q26

Q29

R18

R14

R12

R10

R7

Q19

C1

Q24

Q23

Q20

R6

R3

Q21

Q22

Q16

Q15

Q18

R5

R4

Q13

Q14

Q17

R2

R1

OFFSET N2

OFFSET N1

Q12

Q10

Q9

Q11

Q8

Q7

Q5

Q6

Q4

Q1

Q3

Q2

Q51

CC

V

CC+

V

ACTUAL DEVICE COMPONENT COUNT

COMPONENT

TLE2027

TLE2037

Transistors

61

61

Resistors

26

26

epiFET

1

1

Capacitors

4

4

background image

TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y

EXCALIBUR LOW-NOISE HIGH-SPEED

PRECISION OPERATIONAL AMPLIFIERS

SLOS192 – FEBRUARY 1997

6–5

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V

CC+

 (see Note 1)  

 19 V

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Supply voltage, V

CC –

  

 – 19 V

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Differential input voltage, V

ID

 (see Note 2)  

 

±

1.2 V

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Input voltage range, V

I

 (any input)  

 V

CC

±

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Input current, I

I

 (each Input)  

 

±

1 mA

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Output current, I

O

  

 

±

50 mA

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Total current into V

CC+

  

 50 mA

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Total current out of V

CC –

  

 50 mA

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Duration of short-circuit current at (or below) 25

°

C (see Note 3)  

 unlimited

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Continuous total power dissipation  

 See Dissipation Rating Table

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Operating free-air temperature range, T

A

: C suffix  

 0

°

C to 70

°

C

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

I suffix  

 – 40

°

C to  105

°

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

M suffix  

 – 55

°

C to 125

°

C

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Storage temperature range, T

stg

   

– 65

°

C to 150

°

C

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Case temperature for 60 seconds, T

C

: FK package  

 260

°

C

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package  

 260

°

C

. . . . . . . . . . . . . . . . 

Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package  

 300

°

C

. . . . . . . . . . . . . . . . . . . 

† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and

functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not

implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES:

1. All voltage values, except differential voltages, are with respect to the midpoint between VCC + and VCC – .

2. Differential voltages are at IN+ with respect to IN –. Excessive current flows if a differential input voltage in excess of approximately

±

1.2 V is applied between the inputs unless some limiting resistance is used.

3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum

dissipation rating is not exceeded.

DISSIPATION RATING TABLE

PACKAGE

TA 

 25

°

C

POWER RATING

DERATING FACTOR

ABOVE TA = 25

°

C

TA = 70

°

C

POWER RATING

TA = 105

°

C

POWER RATING

TA = 125

°

C

POWER RATING

D

725  mW

5.8  mW/

°

C

464 mW

261 mW

145 mW

FK

1375 mW

11.0 mW/

°

C

880 mW

495 mW

275 mW

JG

1050 mW

8.4  mW/

°

C

672 mW

378 mW

210 mW

P

1000 mW

8.0  mW/

°

C

640 mW

360 mW

200 mW

recommended operating conditions

C SUFFIX

I SUFFIX

M SUFFIX

UNIT

MIN

MAX

MIN

MAX

MIN

MAX

UNIT

Supply voltage, VCC

±

±

4

±

19

±

4

±

19

±

4

±

19

V

Common mode input voltage VIC

TA = 25

°

C

– 11

11

– 11

11

– 11

11

V

Common-mode input voltage, VIC

TA = Full  range‡

– 10.5

10.5

– 10.4

10.4

– 10.2

10.2

V

Operating free-air temperature, TA

0

70

– 40

105

– 55

125

°

C

‡ Full range is 0

°

C to 70

°

C for C-suffix devices, – 40

°

C to 105

°

C for I-suffix devices, and – 55

°

C to 125

°

C for M-suffix devices.

background image

TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y

EXCALIBUR LOW-NOISE HIGH-SPEED

PRECISION OPERATIONAL AMPLIFIERS

SLOS192 – FEBRUARY 1997

6–6

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TLE20x7C electrical characteristics at specified free-air temperature, V

CC

±

 = 

±

15 V (unless

otherwise noted)

PARAMETER

TEST CONDITIONS

T †

TLE20x7C

TLE20x7AC

UNIT

PARAMETER

TEST CONDITIONS

TA†

MIN

TYP

MAX

MIN

TYP

MAX

UNIT

VIO

Input offset voltage

25

°

C

20

100

10

25

µ

V

VIO

Input offset voltage

Full range

145

70

µ

V

α

VIO

Temperature coefficient of

input offset voltage

Full range

0.4

1

0.2

1

µ

V/

°

C

Input offset voltage

long-term drift (see Note 4)

VIC = 0,

RS = 50 

25

°

C

 

0.006

1

 

0.006

1

µ

V/mo

IIO

Input offset current

25

°

C

6

90

6

90

nA

IIO

Input offset current

Full range

 

150

 

150

nA

IIB

Input bias current

25

°

C

15

90

15

90

nA

IIB

Input bias current

Full range

150

150

nA

VICR

Common-mode input

RS = 50

25

°

C

–11

to

11

– 13

to

13

–11

to

11

– 13

to

13

V

VICR

voltage range

RS = 50 

Full range

– 10.5

to

10.5

– 10.5

to

10.5

V

RL = 600

25

°

C

10.5

12.9

10.5

12.9

VOM

 

Maximum positive peak

RL

 

= 600

 Ω

Full range

10

10

V

VOM +

output voltage swing

RL = 2 k

25

°

C

12

13.2

12

13.2

V

 

RL = 2 k

Full range

11

11

RL = 600

25

°

C

– 10.5

– 13

– 10.5

– 13

VOM

Maximum negative peak

RL = 600 

Full range

– 10

– 10

V

VOM –

g

output voltage swing

RL = 2 k

25

°

C

– 12

– 13.5

– 12

– 13.5

V

RL = 2 k

Full range

– 11

– 11

VO = 

±

11 V,  RL = 2 k

25

°

C

5

45

10

45

VO = 

±

10 

V, RL = 2 k

Full range

2

4

AVD

Large-signal differential

VO =

±

10 V

RL = 1 k

25

°

C

3.5

38

8

38

V/

µ

V

AVD

g

g

voltage amplification

VO = 

±

10 V,  RL = 1 k

Full range

1

2.5

V/

µ

V

VO = 

±

10 V, 

25

°

C

2

19

5

19

O

,

RL  = 600 

Full range

0.5

2

Ci

Input capacitance

25

°

C

8

8

pF

zo

Open-loop output 

impedance

IO = 0

25

°

C

 

50

 

50

CMRR

Common-mode rejection

VIC = VICRmin,

25

°

C

100

131

117

131

dB

CMRR

j

ratio

IC

ICR

,

RS = 50 

Full range

98

114

dB

kSVR

Supply-voltage rejection 

VCC

±

±

4 V to 

±

18 V,

RS = 50 

25

°

C

94

144

110

144

dB

kSVR

y

g

j

ratio (

VCC

±

/

V

IO

)

VCC

±

±

4 V to 

±

18 V,

RS = 50 

Full range

92

106

dB

ICC

Supply current

VO = 0

No load

25

°

C

3.8

5.3

3.8

5.3

mA

ICC

Supply current

VO = 0,

No load

Full range

5.6

5.6

mA

† Full range is 0

°

C to 70

°

C.

NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150

°

C extrapolated

to TA = 25

°

C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

background image

TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y

EXCALIBUR LOW-NOISE HIGH-SPEED

PRECISION OPERATIONAL AMPLIFIERS

SLOS192 – FEBRUARY 1997

6–7

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TLE20x7C operating characteristics at specified free-air temperature, V

CC

±

 = 

±

15 V, T

A

 = 25

°

C

(unless otherwise specified)

PARAMETER

TEST CONDITIONS

TLE20x7C

TLE20x7AC

UNIT

PARAMETER

TEST CONDITIONS

MIN

TYP

MAX

MIN

TYP

MAX

UNIT

RL = 2 k

,

CL 100 pF

TLE2027

1.7

2.8

1.7

2.8

CL = 100 pF,

See Figure 1

TLE2037

6

7.5

6

7.5

SR

Slew rate at unity gain

RL = 2 k

,

CL = 100 pF,

TLE2027

1.2

1.2

V/

µ

s

L

,

TA = 0

°

C to 70

°

C,

See Figure 1

TLE2037

5

5

V

Equivalent input noise volt-

RS = 20 

,

f = 10 Hz

3.3

8

3.3

4.5

nV/

Hz

Vn

q

age (see Figure 2)

RS = 20 

,

f = 1 kHz

2.5

4.5

2.5

3.8

nV/

Hz

VN(PP)

Peak-to-peak equivalent in-

put noise voltage

f = 0.1 Hz to 10 Hz

50

250

50

130

nV

I

Equivalent input noise cur-

f = 10 Hz

1.5

4

1.5

4

pA/

Hz

In

q

rent

f = 1 kHz

0.4

0.6

0.4

0.6

pA/

Hz

THD

Total harmonic distortion

VO = + 10 V,

AVD = 1, 

See Note 5

TLE2027

< 0.002%

< 0.002%

THD

Total harmonic distortion

VO = + 10 V,

AVD = 5, 

See Note 5

TLE2037

< 0.002%

< 0.002%

B1

Unity-gain bandwidth

RL = 2 k

,

TLE2027

7

13

9

13

MHz

B1

y g

(see Figure 3)

L

,

CL = 100 pF

TLE2037

35

50

35

50

MHz

BOM

Maximum output-swing

RL = 2 k

TLE2027

30

30

kHz

BOM

g

bandwidth

RL = 2 k

TLE2037

80

80

kHz

φ

m

Phase margin at unity gain

RL = 2 k

,

TLE2027

55

°

55

°

φ

m

g

y g

(see Figure 3)

L

CL = 100 pF

TLE2037

50

°

50

°

NOTE 5: Measured distortion of the source used in the analysis was 0.002%.

background image

TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y

EXCALIBUR LOW-NOISE HIGH-SPEED

PRECISION OPERATIONAL AMPLIFIERS

SLOS192 – FEBRUARY 1997

6–8

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TLE20x7I electrical characteristics at specified free-air temperature, V

CC

±

 = 

±

15 V (unless

otherwise noted)

PARAMETER

TEST CONDITIONS

T †

TLE20x7I

TLE20x7AI

UNIT

PARAMETER

TEST CONDITIONS

TA†

MIN

TYP

MAX

MIN

TYP

MAX

UNIT

VIO

Input offset voltage

25

°

C

20

100

10

25

µ

V

VIO

Input offset voltage

Full range

180

105

µ

V

α

VIO

Temperature coefficient of

input offset voltage

Full range

0.4

1

0.2

1

µ

V/

°

C

Input offset voltage

long-term drift (see Note 4)

VIC = 0, 

RS = 50 

25

°

C

 

0.006

1

 

0.006

1

µ

V/mo

IIO

Input offset current

25

°

C

6

90

6

90

nA

IIO

Input offset current

Full range

 

150

 

150

nA

IIB

Input bias current

25

°

C

15

90

15

90

nA

IIB

Input bias current

Full range

150

150

nA

VICR

Common-mode input 

RS = 50

25

°

C

–11

to

11

– 13

to

13

–11

to

11

– 13

to

13

V

VICR

voltage range

RS = 50 

Full range

– 10.4

to

10.4

– 10.4

to

10.4

V

RL = 600

25

°

C

10.5

12.9

10.5

12.9

VOM

 

Maximum positive peak

RL

 

= 600

 Ω

Full range

10

10

V

VOM +

output voltage swing

RL = 2 k

25

°

C

12

13.2

12

13.2

V

 

RL = 2 k

Full range

11

11

RL = 600

25

°

C

– 10.5

– 13

– 10.5

– 13

VOM

Maximum negative peak

RL = 600 

Full range

– 10

– 10

V

VOM –

g

output voltage swing

RL = 2 k

25

°

C

– 12

– 13.5

– 12

– 13.5

V

RL = 2 k

Full range

– 11

– 11

VO = 

±

11 V, RL = 2 k

25

°

C

5

45

10

45

VO = 

±

10 V, RL = 2 k

Full range

2

3.5

AVD

Large-signal differential

VO =

±

10 V RL = 1 k

25

°

C

3.5

38

8

38

V/

µ

V

AVD

g

g

voltage amplification

VO = 

±

10 V, RL = 1 k

Full range

1

2.2

V/

µ

V

VO =

±

10 V RL = 600

25

°

C

2

19

5

19

VO = 

±

10 V, RL = 600 

Full range

0.5

1.1

Ci

Input capacitance

25

°

C

8

8

pF

zo

Open-loop output 

impedance

IO = 0

25

°

C

 

50

 

50

CMRR

Common-mode rejection

VIC = VICRmin,

25

°

C

100

131

117

131

dB

CMRR

j

ratio

IC

ICR

,

RS = 50 

Full range

96

113

dB

kSVR

Supply-voltage rejection 

VCC

±

±

4 V to 

±

18 V,

RS = 50 

25

°

C

94

144

110

144

dB

kSVR

y

g

j

ratio (

VCC

±

/

V

IO

)

VCC

±

±

4 V to 

±

18 V,

RS = 50 

Full range

90

105

dB

ICC

Supply current

VO = 0

No load

25

°

C

3.8

5.3

3.8

5.3

mA

ICC

Supply current

VO = 0, 

No load

Full range

5.6

5.6

mA

† Full range is – 40

°

C to 105

°

C.

NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150

°

C extrapolated

to TA = 25

°

C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

background image

TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y

EXCALIBUR LOW-NOISE HIGH-SPEED

PRECISION OPERATIONAL AMPLIFIERS

SLOS192 – FEBRUARY 1997

6–9

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TLE20x7I operating characteristics at specified free-air temperature, V

CC

±

 = 

±

15 V, T

A

 = 25

°

C

(unless otherwise specified)

PARAMETER

TEST CONDITIONS

TLE20x7I

TLE20x7AI

UNIT

PARAMETER

TEST CONDITIONS

MIN

TYP

MAX

MIN

TYP

MAX

UNIT

RL = 2 k

,

CL 100 pF

TLE2027

1.7

2.8

1.7

2.8

CL = 100 pF,

See Figure 1

TLE2037

6

7.5

6

7.5

SR

Slew rate at unity gain

RL = 2 k

,

CL = 100 pF,

TLE2027

1.1

1.1

V/

µ

s

L

,

TA = – 40

°

C to 85

°

C,

See Figure 1

TLE2037

4.7

4.7

V

Equivalent input noise

RS = 20 

,

f = 10 Hz

3.3

8

3.3

4.5

nV/

Hz

Vn

q

voltage (see Figure 2)

RS = 20 

,

f = 1 kHz

2.5

4.5

2.5

3.8

nV/

Hz

VN(PP)

Peak-to-peak equivalent

input noise voltage

f = 0.1 Hz to 10 Hz

50

250

50

130

nV

I

Equivalent input noise

f = 10 Hz

1.5

4

1.5

4

pA/

Hz

In

q

current

f = 1 kHz

0.4

0.6

0.4

0.6

pA/

Hz

THD

Total harmonic distortion

VO = + 10 V, 

AVD = 1, 

See Note 5

TLE2027

< 0.002%

< 0.002%

THD

Total harmonic distortion

VO = + 10 V, 

AVD = 5, 

See Note 5

TLE2037

< 0.002%

< 0.002%

B1

Unity-gain bandwidth

RL = 2 k

,

TLE2027

7

13

9

13

MHz

B1

y g

(see Figure 3)

L

,

CL = 100 pF

TLE2037

35

50

35

50

MHz

BOM

Maximum output-swing

RL = 2 k

TLE2027

30

30

kHz

BOM

g

bandwidth

RL = 2 k

TLE2037

80

80

kHz

φ

Phase margin at unity

RL = 2 k

,

TLE2027

55

°

55

°

φ

m

g

y

gain (see Figure 3)

L

,

CL = 100 pF

TLE2037

50

°

50

°

NOTE 5: Measured distortion of the source used in the analysis was 0.002%.

background image

TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y

EXCALIBUR LOW-NOISE HIGH-SPEED

PRECISION OPERATIONAL AMPLIFIERS

SLOS192 – FEBRUARY 1997

6–10

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TLE20x7M electrical characteristics at specified free-air temperature, V

CC

±

 = 

±

15 V (unless

otherwise noted)

PARAMETER

TEST CONDITIONS

T †

TLE20x7M

TLE20x7AM

UNIT

PARAMETER

TEST CONDITIONS

TA†

MIN

TYP

MAX

MIN

TYP

MAX

UNIT

VIO

Input offset voltage

25

°

C

20

100

10

25

µ

V

VIO

Input offset voltage

Full range

200

105

µ

V

α

VIO

Temperature coefficient of

input offset voltage

Full range

0.4

1*

0.2

1*

µ

V/

°

C

Input offset voltage

long-term drift (see Note 4)

VIC = 0,       RS = 50 

25

°

C

 

0.006

1*

 

0.006

1*

µ

V/mo

IIO

Input offset current

25

°

C

6

90

6

90

nA

IIO

Input offset current

Full range

 

150

 

150

nA

IIB

Input bias current

25

°

C

15

90

15

90

nA

IIB

Input bias current

Full range

150

150

nA

VICR

Common-mode input

RS = 50

25

°

C

–11

to

11

– 13

to

13

–11

to

11

– 13

to

13

V

VICR

voltage range

RS = 50 

Full range

– 10.3

to

10.3

– 10.4

to

10.4

V

RL = 600

25

°

C

10.5

12.9

10.5

12.9

VOM

 

Maximum positive peak

RL

 

= 600

 Ω

Full range

10

10

V

VOM +

output voltage swing

RL = 2 k

25

°

C

12

13.2

12

13.2

V

 

RL = 2 k

Full range

11

11

RL = 600

25

°

C

– 10.5

– 13

– 10.5

– 13

VOM

Maximum negative peak

RL = 600 

Full range

– 10

– 10

V

VOM –

g

output voltage swing

RL = 2 k

25

°

C

– 12

– 13.5

– 12

– 13.5

V

RL = 2 k

Full range

– 11

– 11

VO = 

±

11 V, RL = 2 k

25

°

C

5

45

10

45

VO = 

±

10 V, RL = 2 k

Full range

2.5

3.5

AVD

Large-signal differential

voltage amplification

VO =

±

10 V RL = 1 k

25

°

C

3.5

38

8

38

V/

µ

V

VD

voltage am lification

VO = 

±

10 V, RL = 1 k

Full range

1.8

2.2

µ

VO =

±

10 V RL = 600

25

°

C

2

19

5

19

VO = 

±

10 V, RL = 600 

25

°

C

2

19

5

19

Ci

Input capacitance

25

°

C

8

8

pF

zo

Open-loop output 

impedance

IO = 0

25

°

C

 

50

 

50

CMRR

Common-mode rejection

VIC = VICRmin,

25

°

C

100

131

117

131

dB

CMRR

j

ratio

IC

ICR

,

RS = 50 

Full range

96

113

dB

kSVR

Supply-voltage rejection 

VCC

±

±

4 V to 

±

18 V,

RS = 50 

25

°

C

94

144

110

144

dB

kSVR

y

g

j

ratio (

VCC

±

/

V

IO

)

VCC

±

±

4 V to 

±

18 V,

RS = 50 

Full range

90

105

dB

ICC

Supply current

VO = 0

No load

25

°

C

3.8

5.3

3.8

5.3

mA

ICC

Supply current

VO = 0,        No load

Full range

5.6

5.6

mA

* On products compliant to MIL-PRF-38535, this parameter is not production tested.

† Full range is – 55

°

C to 125

°

C.

NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150

°

C extrapolated

to TA = 25

°

C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

background image

TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y

EXCALIBUR LOW-NOISE HIGH-SPEED

PRECISION OPERATIONAL AMPLIFIERS

SLOS192 – FEBRUARY 1997

6–11

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TLE20x7M operating characteristics at specified free-air temperature, V

CC

±

 = 

±

15 V, T

A

 = 25

°

C

(unless otherwise specified)

PARAMETER

TEST CONDITIONS

TLE20x7M

TLE20x7AM

UNIT

PARAMETER

TEST CONDITIONS

MIN

TYP

MAX

MIN

TYP

MAX

UNIT

RL = 2 k

,

CL 100 pF

TLE2027

1.7

2.8

1.7

2.8

CL = 100 pF,

See Figure 1

TLE2037

6*

7.5

6*

7.5

SR

Slew rate at unity gain

RL = 2 k

,

CL = 100 pF,

TLE2027

1

1

V/

µ

s

L

,

TA = – 55

°

C to 125

°

C,

See Figure 1

TLE2037

4.4*

4.4*

V

Equivalent input noise

RS = 20 

,

f = 10 Hz

3.3

8*

3.3

4.5*

nV/

Hz

Vn

q

voltage (see Figure 2)

RS = 20 

,

f = 1 kHz

2.5

4.5 *

2.5

3.8*

nV/

Hz

VN(PP)

Peak-to-peak equivalent

input noise voltage

f = 0.1 Hz to 10 Hz

50

250*

50

130*

nV

I

Equivalent input noise

f = 10 Hz

1.5

4*

1.5

4*

pA/

Hz

In

q

current

f = 1 kHz

0.4

0.6*

0.4

0.6*

pA/

Hz

THD

Total harmonic distortion

VO = + 10 V,

AVD = 1, 

See Note 5

TLE2027

< 0.002%

< 0.002%

THD

Total harmonic distortion

VO = + 10 V,

AVD = 5, 

See Note 5

TLE2037

< 0.002%

< 0.002%

B1

Unity-gain bandwidth

RL = 2 k

,

TLE2027

7*

13

9*

13

MHz

B1

y g

(see Figure 3)

L

,

CL = 100 pF

TLE2037

35

50

35

50

MHz

BOM

Maximum output-swing

RL = 2 k

TLE2027

30

30

kHz

BOM

g

bandwidth

RL = 2 k

TLE2037

80

80

kHz

φ

m

Phase margin at unity

RL = 2 k

,

TLE2027

55

°

55

°

φ

m

g

y

gain (see Figure 3)

L

CL = 100 pF

TLE2037

50

°

50

°

* On products compliant to MIL-PRF-38535, this parameter is not production tested.

NOTE 5: Measured distortion of the source used in the analysis was 0.002%.

background image

TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y

EXCALIBUR LOW-NOISE HIGH-SPEED

PRECISION OPERATIONAL AMPLIFIERS

SLOS192 – FEBRUARY 1997

6–12

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TLE20x7Y electrical characteristics, V

CC

±

 = 

±

15 V, T

A

 = 25

°

C (unless otherwise noted)

PARAMETER

TEST CONDITIONS

TLE20x7Y

UNIT

PARAMETER

TEST CONDITIONS

MIN

TYP

MAX

UNIT

VIO

Input offset voltage

20

µ

V

Input offset voltage

long-term drift (see Note 4)

VIC = 0,

RS = 50 

0.006

µ

V/mo

IIO

Input offset current

IC

,

S

6

nA

IIB

Input bias current

15

nA

VICR

Common-mode input voltage range

RS = 50 

– 13

to

13

V

VOM

Maximum positive peak output voltage swing

RL

 

= 600

 Ω

12.9

V

VOM + Maximum positive peak output voltage swing

RL = 2 k

13.2

V

VOM

Maximum negative peak output voltage swing

RL = 600 

– 13

V

VOM – Maximum negative peak output voltage swing

RL = 2 k

– 13.5

V

VO = 

±

11 V,  RL = 2 k

45

AVD

Large-signal differential voltage amplification

VO = 

±

10 

V, RL = 1 k

38

V/

µ

V

AVD

Large-signal differential voltage am lification

VO = 

±

10 V, 

RL  = 600 

19

V/

µ

V

Ci

Input capacitance

8

pF

zo

Open-loop output impedance

IO = 0

50

CMRR

Common-mode rejection ratio

VIC = VICRmin,

RS = 50 

131

dB

kSVR

Supply-voltage rejection ratio (

VCC

±

/

V

IO

)

VCC

±

±

4 V to 

±

18 V,

RS = 50 

144

dB

ICC

Supply current

VO = 0,

No load

3.8

mA

NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150

°

C extrapolated

to TA = 25

°

C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

background image

TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y

EXCALIBUR LOW-NOISE HIGH-SPEED

PRECISION OPERATIONAL AMPLIFIERS

SLOS192 – FEBRUARY 1997

6–13

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TLE20x7Y operating characteristics at specified free-air temperature, V

CC

±

 = 

±

15 V

PARAMETER

TEST CONDITIONS

TLE20x7Y

UNIT

PARAMETER

TEST CONDITIONS

MIN

TYP

MAX

UNIT

SR

Slew rate at unity gain

RL = 2 k

,

CL = 100 pF,

TLE2027

2.8

V/

µ

s

SR

Slew rate at unity gain

L

,

L

,

See Figure 1

TLE2037

7.5

V/

µ

s

V

Equivalent input noise voltage (see Figure 2)

RS = 20 

,

f = 10 Hz

3.3

nV/

Hz

Vn

Equivalent input noise voltage (see Figure 2)

RS = 20 

,

f = 1 kHz

2.5

nV/

Hz

VN(PP) Peak-to-peak equivalent input noise voltage

f = 0.1 Hz to 10 Hz

50

nV

I

Equivalent input noise current

f = 10 Hz

1.5

pA/

Hz

In

Equivalent input noise current

f = 1 kHz

0.4

pA/

Hz

THD

Total harmonic distortion

VO = + 10 V, AVD = 1, 

See Note 5

TLE2027

< 0.002%

THD

Total harmonic distortion

VO = + 10 V, AVD = 5, 

See Note 5

TLE2037

< 0.002%

B1

Unity gain bandwidth (see Figure 3)

RL = 2 k

CL = 100 pF

TLE2027

13

MHz

B1

Unity-gain bandwidth (see Figure 3)

RL = 2 k

,

CL = 100 pF

TLE2037

50

MHz

BOM

Maximum output swing bandwidth

RL = 2 k

TLE2027

30

kHz

BOM

Maximum output-swing bandwidth

RL = 2 k

TLE2037

80

kHz

φ

m

Phase margin at unity gain (see Figure 3)

RL = 2 k

CL = 100 pF

TLE2027

55

°

φ

m

Phase margin at unity gain (see Figure 3)

RL = 2 k

,

CL = 100  F

TLE2037

50

°

NOTE 5: Measured distortion of the source used in the analysis was 0.002%.

background image

TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y

EXCALIBUR LOW-NOISE HIGH-SPEED

PRECISION OPERATIONAL AMPLIFIERS

SLOS192 – FEBRUARY 1997

6–14

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

PARAMETER MEASUREMENT INFORMATION

VO

20 

20 

2 k

– 15 V

15 V

+

RL = 2 k

CL =

100 pF

(see Note A)

VO

– 15 V

VI

+

15 V

Rf

NOTE A: CL includes fixture capacitance.

RI

Figure 1. Slew-Rate Test Circuit

Figure 2. Noise-Voltage Test Circuit

VO

2 k

CL =

100 pF

(see Note A)

10 k

100 

VI

–15 V

15 V

+

VO

2 k

– 15 V

15 V

+

VI

CL =

100 pF

(see Note A)

NOTES: A. CL includes fixture capacitance.

NOTE A: CL includes fixture capacitance.

B. For the TLE2037 and TLE2037A,

AVD must be 

 5.

Rf

RI

Figure 3. Unity-Gain Bandwidth and

Figure 4. Small-Signal Pulse-

Phase-Margin Test Circuit (TLE2027 Only)

Response Test Circuit

background image

TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y

EXCALIBUR LOW-NOISE HIGH-SPEED

PRECISION OPERATIONAL AMPLIFIERS

SLOS192 – FEBRUARY 1997

6–15

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

typical values

Typical values presented in this data sheet represent the median (50% point) of device parametric performance.

initial estimates of parameter distributions

In the ongoing program of improving data sheets and supplying more information to our customers, Texas

Instruments has added an estimate of not only the typical values but also the spread around these values. These

are in the form of distribution bars that show the 95% (upper) points and the 5% (lower) points from the

characterization of the initial wafer lots of this new device type (see Figure 5). The distribution bars are shown

at the points where data was actually collected. The 95% and 5% points are used instead of 

±

3 sigma since

some of the distributions are not true Gaussian distributions.

The number of units tested and the number of different wafer lots used are on all of the graphs where distribution

bars are shown. As noted in Figure 5, there were a total of 835 units from two wafer lots. In this case, there is

a good estimate for the within-lot variability and a possibly poor estimate of the lot-to-lot variability. This is always

the case on newly released products since there can only be data available from a few wafer lots.

The distribution bars are not intended to replace the minimum and maximum limits in the electrical tables.  Each

distribution bar represents 90% of the total units tested at a specific temperature. While 10% of the units tested

fell outside any given distribution bar, this should not be interpreted to mean that the same individual devices

fell outside every distribution bar.

– Supply Current – mA

CCI

4.5

5

4

3.5

3

2.5

TA – Free-Air Temperature – 

°

C

150

125

100

75

50

25

0

– 25

– 50

– 75

(5% of the devices fell below this point.)

5% point on the distribution bar

and lower points on the distribution bar.

90% of the devices were within the upper

(5% of the devices fell above this point.)

95% point on the distribution bar

SUPPLY CURRENT

vs

FREE-AIR TEMPERATURE

ÎÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎÎ

VCC

±

 = 

±

15 V

VO = 0

No Load

Sample Size = 835 Units

From 2 Water Lots

Figure 5. Sample Graph With Distribution Bars

background image

TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y

EXCALIBUR LOW-NOISE HIGH-SPEED

PRECISION OPERATIONAL AMPLIFIERS

SLOS192 – FEBRUARY 1997

6–16

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Table of Graphs

FIGURE

VIO

Input offset voltage

Distribution

6, 7

VIO

Input offset voltage change

vs

Time after power on

8, 9

IIO

Input offset current

vs

Free-air temperature

10

IIB

Input bias current

vs

Free-air temperature

11

IIB

Input bias current

vs

Common-mode input voltage

12

II

Input current

vs

Differential input voltage

13

VO(PP)

Maximum peak-to-peak output voltage

vs

Frequency

14, 15

VOM

Maximum (positive/negative) peak output

vs

Load resistance

16, 17

VOM

(

g

)

voltage

vs

Free-air temperature

,

18, 19

vs

Supply voltage

20

AVD

Large signal differential voltage amplification

vs

vs

Su

ly voltage

Load resistance

20

21

AVD

Large-signal differential voltage amplification

vs

Frequency

22 – 25

vs

Free-air temperature

26

zo

Output impedance

vs

Frequency

27

CMRR

Common-mode rejection ratio

vs

Frequency

28

kSVR

Supply-voltage rejection ratio

vs

Frequency

29

vs

Supply voltage

30, 31

IOS

Short-circut output current

vs

y

g

Elapsed time

,

32, 33

OS

vs

Free-air temperature

34, 35

ICC

Supply current

vs

Supply voltage

36

ICC

Supply current

vs

y

g

Free-air temperature

37

Voltage follower pulse response

Small signal

38, 40

Voltage-follower pulse response

g

Large signal

,

39, 41

Vn

Equivalent input noise voltage

vs

Frequency

42

Noise voltage (referred to input)

Over 10-second interval

43

B1

Unity gain bandwidth

vs

Supply voltage

44

B1

Unity-gain bandwidth

vs

y

g

Load capacitance

45

Gain bandwidth product

vs

Supply voltage

46

Gain bandwidth product

vs

y

g

Load capacitance

47

SR

Slew rate

vs

Free-air temperature

48, 49

vs

Supply voltage

50, 51

φ

m

Phase margin

vs

y

g

Load capacitance

,

52, 53

φ

m

g

vs

Free-air temperature

54, 55

Phase shift

vs

Frequency

22 – 25

background image

TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y

EXCALIBUR LOW-NOISE HIGH-SPEED

PRECISION OPERATIONAL AMPLIFIERS

SLOS192 – FEBRUARY 1997

6–17

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 6

Percentage of 

Amplifiers – %

VIO – Input Offset Voltage – 

µ

V

TA = 25

°

C

VCC

±

 = +15 V

16

14

12

10

8

6

4

2

0

120

90

60

30

– 30

– 60

– 90

– 120

0

ÎÎÎÎ

D Package

ÎÎÎÎÎÎÎÎÎÎÎÎ

1568 Amplifiers Tested From 2 Wafer Lots

DISTRIBUTION

INPUT OFFSET VOLTAGE

Figure 7

INPUT OFFSET VOLTAGE CHANGE

vs

TIME AFTER POWER ON

0

0

t – Time After Power On – s

10

20

30

40

50

60

2

4

6

8

10

12

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

A

VIO – Change in Input Offset V

oltage – 

ÁÁ

ÁÁ

ÁÁ

V

IO

µ

V

ÎÎÎÎÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎÎÎÎÎ

50 Amplifiers Tested From 2 Wafer Lots

VCC

±

 = 

±

15 V

TA = 25

°

C

ÎÎÎÎ

ÎÎÎÎ

D Package

Figure 8

t – Time After Power On – s

INPUT OFFSET VOLTAGE CHANGE

vs

TIME AFTER POWER ON

6

5

4

3

2

1

0

0

20

40

60

80

100 120 140 160 180

A

VIO – Change in Input Offset V

oltage – 

ÁÁ

ÁÁ

V

IO

µ

V

ÎÎÎÎÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎÎÎÎÎ

50 Amplifiers Tested From 2 Wafer Lots

VCC

±

 = 

±

15 V

TA = 25

°

C

ÎÎÎÎ

ÎÎÎÎ

P Package

Figure 9

0

IIO – Input Offset Current – nA

5

10

15

20

25

30

150

125

100

75

50

25

0

– 25

– 50

TA – Free-Air Temperature – 

°

C

– 75

INPUT OFFSET CURRENT

vs

FREE-AIR TEMPERATURE

IOI

ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ

VCC

±

 = 

±

15 V

VIC = 0

Sample Size = 833 Units

From 2 Wafer Lots

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

background image

TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y

EXCALIBUR LOW-NOISE HIGH-SPEED

PRECISION OPERATIONAL AMPLIFIERS

SLOS192 – FEBRUARY 1997

6–18

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 10

INPUT BIAS CURRENT

vs

FREE-AIR TEMPERATURE

– 20

– 75

IIB – Input Bias Current – nA

TA – Free-Air Temperature – 

°

C

– 10

0

10

20

30

40

50

60

– 50 – 25

0

25

50

75

100 125 150

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

VCC

±

 = 

±

15 V

VIC = 0

Sample Size = 836 Units

From 2 Wafer Lots

IBI

Figure 11

INPUT BIAS CURRENT

vs

COMMON-MODE INPUT VOLTAGE

0

–12

VIC – Common-Mode Input Voltage – V

– 8

– 4

0

4

8

12

5

10

15

20

25

30

35

40

TA = 25

°

C

VCC

±

 = 

±

15 V

IIB – Input Bias Current – nA IBI

Figure 12

II – Input Current – mA

– 1

– 1.8

VID – Differential Input Voltage – V

– 0.8

– 0.6

– 0.4

– 0.2

0

0.2

0.4

0.6

0.8

1

– 1.2

– 0.6

0

0.6

1.2

1.8

INPUT CURRENT

vs

DIFFERENTIAL INPUT VOLTAGE

II

ÁÁÁÁÁ

ÁÁÁÁÁ

ÁÁÁÁÁ

VCC

±

 = 

±

15 V

VIC = 0

TA = 25

°

C

Figure 13

V

O(PP)

– Maximum Peak-to-Peak Output V

oltage – V

TA = – 55

°

C

TA = 125

°

C

10 M

1 M

100 k

30

25

20

15

10

5

f – Frequency – Hz

10 k

0

ÎÎÎÎÎ

ÎÎÎÎÎ

ÎÎÎÎÎ

VCC

±

±

15 V

RL = 2 k

TLE2027

MAXIMUM PEAK-TO-PEAK

OUTPUT VOLTAGE

vs

FREQUENCY

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

background image

TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y

EXCALIBUR LOW-NOISE HIGH-SPEED

PRECISION OPERATIONAL AMPLIFIERS

SLOS192 – FEBRUARY 1997

6–19

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 14

VO(PP) – Maximum Peak-to-Peak Output V

oltage – V

0

10 k

f – Frequency – Hz

5

10

15

20

25

30

100 k

1 M

100 M

TA = – 55

°

C

10 M

ÁÁÁ

ÁÁÁ

ÁÁÁ

V

O(PP)

ÁÁÁÁÁ

ÁÁÁÁÁ

ÁÁÁÁÁ

ÎÎÎÎÎ

ÎÎÎÎÎ

RL = 2 k

ÎÎÎÎÎ

ÎÎÎÎÎ

VCC

±

 = 

±

15 V

ÎÎÎÎ

ÎÎÎÎ

TA = 125

°

C

TLE2037

MAXIMUM PEAK-TO-PEAK

OUTPUT VOLTAGE

vs

FREQUENCY

Figure 15

MAXIMUM POSITIVE PEAK

OUTPUT VOLTAGE

vs

LOAD RESISTANCE

0

100

VOM+ – Maximum Positive Peak Output V

oltage – V

RL – Load Resistance – 

2

4

6

8

10

12

14

1 k

10 k

ÁÁ

ÁÁ

ÁÁ

V

OM

+

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

VCC

±

 = 

±

15 V

TA = 25

°

C

Figure 16

0

100

VOM– – Maximum Negative Peak Output V

oltage – V

RL – Load Resistance – 

– 2

– 4

– 6

– 8

– 10

– 12

– 14

1 k

10 k

MAXIMUM NEGATIVE PEAK

OUTPUT VOLTAGE

vs

LOAD RESISTANCE

ÁÁ

ÁÁ

ÁÁ

V

OM

ÁÁÁÁÁ

ÁÁÁÁÁ

ÁÁÁÁÁ

VCC

±

 = 

±

15 V

TA = 25

°

C

Figure 17

MAXIMUM POSITIVE PEAK

OUTPUT VOLTAGE

vs

FREE-AIR TEMPERATURE

12.9

– 75

TA – Free-Air Temperature – 

°

C

13

13.1

13.2

13.3

13.4

13.5

– 50 – 25

0

25

50

75

100 125 150

VOM+ – Maximum Positive Peak Output V

oltage – V

ÁÁ

ÁÁ

ÁÁ

V

OM

+

ÎÎÎÎÎ

ÎÎÎÎÎ

VCC

±

 = 

±

15 V

ÎÎÎÎÎ

ÎÎÎÎÎ

RL = 2 k

ÎÎÎÎÎÎ

ÎÎÎÎÎÎ

From 2 Wafer Lots

ÎÎÎÎÎÎÎ

Sample Size = 832 Units

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

background image

TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y

EXCALIBUR LOW-NOISE HIGH-SPEED

PRECISION OPERATIONAL AMPLIFIERS

SLOS192 – FEBRUARY 1997

6–20

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 18

MAXIMUM NEGATIVE PEAK

OUTPUT VOLTAGE

vs

FREE-AIR TEMPERATURE

– 14

– 75

TA – Free-Air Temperature – 

°

C

– 13.8

– 13.6

– 13.4

– 13.2

– 13

– 50 – 25

0

25

50

75

100 125 150

ÎÎÎÎÎ

RL = 2 k

ÎÎÎÎÎ

ÎÎÎÎÎ

VCC

±

 = 

±

15 V

VOM– – Maximum Negative Peak Output V

oltage – V

ÁÁÁ

ÁÁÁ

ÁÁÁ

V

OM

ÎÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎÎ

Sample Size = 831 Units

ÎÎÎÎÎÎ

ÎÎÎÎÎÎ

From 2 Wafer Lots

Figure 19

LARGE-SIGNAL DIFFERENTIAL

VOLTAGE AMPLIFICATION

vs

SUPPLY VOLTAGE

0

0

VCC

±

 – Supply Voltage – V

50

4

8

12

16

20

10

20

30

40

RL = 2 k

RL = 1 k

RL = 600 

ÎÎÎÎ

TA = 25

°

C

A

VD – Large-Signal differential

ÁÁ

ÁÁ

ÁÁ

A

VD

V

µ

V/

V

oltage Amplification 

Figure 20

10

0

50

100

200

400

1 k

4 k

10 k

2 k

40

30

20

RL – Load Resistance – 

ÁÁÁÁ

ÁÁÁÁ

ÁÁÁÁ

TA = 25

°

C

VCC

±

 = 

±

15 V

A

VD – Large-Signal differential

ÁÁ

ÁÁ

ÁÁ

A

VD

V

µ

V/

V

oltage Amplification 

LARGE-SIGNAL DIFFERENTIAL

VOLTAGE AMPLIFICATION

vs

LOAD RESISTANCE

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

background image

TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y

EXCALIBUR LOW-NOISE HIGH-SPEED

PRECISION OPERATIONAL AMPLIFIERS

SLOS192 – FEBRUARY 1997

6–21

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

AVD

Phase Shift

VCC

±

 = 

±

 15 V

RL = 2 k

CL = 100 pF

TA = 25

°

C

 Phase Shift

275

°

75

°

250

°

225

°

200

°

175

°

150

°

125

°

100

°

140

120

100

80

60

40

20

100 k

100

160

100 M

f – Frequency – Hz

0

0.1

A

VD – Large-Signal Differential

ÁÁ

ÁÁ

A

VD

V

oltage 

Amplification – dB

Figure 21

TLE2027

LARGE-SIGNAL DIFFERENTIAL VOLTAGE

AMPLIFICATION AND PHASE SHIFT

vs

FREQUENCY

0.1

0

f – Frequency – MHz

100 M

160

100

100 k

20

40

60

80

100

120

140

100

°

125

°

150

°

175

°

200

°

225

°

250

°

75

°

275

°

ÎÎÎÎÎ

ÎÎÎÎÎ

Phase Shift

ÎÎÎ

ÎÎÎ

AVD

Phase Shift

A

VD – Large-Signal Differential

Á

Á

Á

A

VD

V

oltage 

Amplification – dB

ÁÁÁÁÁ

ÁÁÁÁÁ

ÁÁÁÁÁ

ÁÁÁÁÁ

TA = 25

°

C

CL = 100 pF

VCC

±

 = 

±

15 V

RL = 2 k

Figure 22

TLE2037

LARGE-SIGNAL DIFFERENTIAL VOLTAGE

AMPLIFICATION AND PHASE SHIFT

vs

FREQUENCY

background image

TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y

EXCALIBUR LOW-NOISE HIGH-SPEED

PRECISION OPERATIONAL AMPLIFIERS

SLOS192 – FEBRUARY 1997

6–22

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

300

°

100

°

275

°

250

°

225

°

200

°

175

°

150

°

125

°

Phase Shift

AVD

Phase Shift

70

40

20

3

0

– 3

– 6

– 9

– 12

– 15

6

100

f – Frequency – MHz

– 18

10

ÎÎÎÎÎ

ÎÎÎÎÎ

ÎÎÎÎÎ

VCC

±

 = 

±

 15 V

RL = 2 k

CL = 100 pF

TA = 25

°

C

A

VD – Large-Signal Differential

ÁÁ

ÁÁ

ÁÁ

A

VD

V

oltage 

Amplification – dB

Figure 23

TLE2027

LARGE-SIGNAL DIFFERENTIAL VOLTAGE

AMPLIFICATION AND PHASE SHIFT

vs

FREQUENCY

– 5

–10

15

1

2

4

10

40

100

20

10

5

0

30

25

20

f – Frequency – MHz

Phase Shift

275

300

175

200

225

250

100

125

150

°

°

°

°

°

°

°

°

°

ÎÎÎÎÎ

ÎÎÎÎÎ

Phase Shift

ÎÎÎ

ÎÎÎ

AVD

A

VD – Large-Signal Differential

ÁÁ

ÁÁ

A

VD

V

oltage 

Amplification – dB

ÁÁÁÁÁ

ÁÁÁÁÁ

ÁÁÁÁÁ

ÁÁÁÁÁ

TA = 25

°

C

CL = 100 pF

RL = 2 k

VCC

±

 = 

±

15 V

Figure 24

TLE2037

LARGE-SIGNAL DIFFERENTIAL VOLTAGE

AMPLIFICATION AND PHASE SHIFT

vs

FREQUENCY

background image

TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y

EXCALIBUR LOW-NOISE HIGH-SPEED

PRECISION OPERATIONAL AMPLIFIERS

SLOS192 – FEBRUARY 1997

6–23

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 25

– 75

30

TA – Free-Air Temperature – 

°

C

150

60

– 50 – 25

0

25

50

75

100 125

40

50

VCC

±

 = 

±

15 V

ÎÎÎÎÎ

ÎÎÎÎÎ

RL = 2 k

ÎÎÎÎÎ

RL = 1 k

LARGE-SIGNAL DIFFERENTIAL

VOLTAGE AMPLIFICATION

vs

FREE-AIR TEMPERATURE

A

VD – Large-Signal differential

ÁÁ

ÁÁ

ÁÁ

A

VD

V

µ

V/

V

oltage Amplification 

OUTPUT IMPEDANCE

vs

FREQUENCY

Figure 26

10

– 100

zo – Output Impedance – 

f – Frequency – Hz

100 M

100

100

1 k

10 k

100 k

1 M

10 M

– 10

1

10

AVD = 100

See Note A

AVD = 10

ÁÁ

ÁÁ

z

o

ÁÁ

ÁÁ

ÁÁÁÁÁ

ÁÁÁÁÁ

VCC

±

 = 

±

15 V

TA = 25

°

C

NOTE A: For this curve, the TLE2027 is AVD = 1 and the

TLE2037 is AVD = 5.

10

0

CMRR – Common-Mode Rejection Ratio – dB

f – Frequency – Hz

100 M

140

100

1 k

10 k

100 k

1 M

10 M

20

40

60

80

100

120

COMMON-MODE REJECTION RATIO

vs

FREQUENCY

ÁÁÁÁ

ÁÁÁÁ

ÁÁÁÁ

ÎÎÎÎ

TA = 25

°

C

ÎÎÎÎÎ

ÎÎÎÎÎ

VCC

±

±

15 V

Figure 27

10

0

– Supply-V

oltage Rejection Ratio – dB

f – Frequency – Hz

100 M

140

100

1 k

10 k

100 k

1 M

10 M

20

40

60

80

100

120

ÎÎÎÎ

kSVR –

ÎÎÎ

ÎÎÎ

kSVR +

SUPPLY-VOLTAGE REJECTION RATIO

vs

FREQUENCY

ÁÁÁÁ

ÁÁÁÁ

ÎÎÎÎ

TA = 25

°

C

ÎÎÎÎÎÎ

VCC

±

±

15 V

SVR

K

Figure 28

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

background image

TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y

EXCALIBUR LOW-NOISE HIGH-SPEED

PRECISION OPERATIONAL AMPLIFIERS

SLOS192 – FEBRUARY 1997

6–24

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

0

– 30

IOS – Short-Circuit Output Current – mA

– 42

2

4

6

8

10

12

14

16

18

20

– 32

– 34

– 36

– 38

– 40

SHORT-CIRCUIT OUTPUT CURRENT

vs

SUPPLY VOLTAGE

VCC

±

  – Supply Voltage – V

ÁÁÁÁÁ

ÁÁÁÁÁ

ÁÁÁÁÁ

ÁÁÁÁÁ

VID = 100 mV

VO = 0

TA = 25

°

C

ÎÎÎÎ

P Package

ÁÁ

ÁÁ

OSI

Figure 29

SHORT-CIRCUIT OUTPUT CURRENT

vs

SUPPLY VOLTAGE

0

30

44

2

4

6

8

10

12

14

16

18

20

32

34

36

38

40

42

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

VID = – 100 mV

VO = 0

TA = 25

°

C

P Package

IOS – Short-Circuit Output Current – mA

ÁÁ

ÁÁ

OSI

VCC

±

  – Supply Voltage – V

Figure 30

0

– 35

t – Elasped Time – s

180

– 45

30

60

90

120

150

– 37

– 39

– 41

– 43

SHORT-CIRCUIT OUTPUT CURRENT

vs

ELAPSED TIME

ÁÁÁÁÁ

ÁÁÁÁÁ

ÁÁÁÁÁ

ÁÁÁÁÁ

ÎÎÎÎ

P Package

TA = 25

°

C

VO = 0

VID = 100 mV

VCC

±

 = 

±

15 V

IOS – Short-Circuit Output Current – mA

ÁÁÁ

ÁÁÁ

ÁÁÁ

OSI

Figure 31

SHORT-CIRCUIT OUTPUT CURRENT

vs

ELAPSED TIME

0

34

t – Elasped Time – s

180

44

30

60

90

120

150

36

38

40

42

IOS – Short-Circuit Output Current – mA

ÁÁ

ÁÁ

OSI

ÁÁÁÁÁ

ÁÁÁÁÁ

ÁÁÁÁÁ

ÁÁÁÁÁ

ÁÁÁÁÁ

ÎÎÎÎÎ

P Package

TA = 25

°

C

VO = 0

VID = 100 mV

VCC

±

 = 

±

15 V

Figure 32

background image

TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y

EXCALIBUR LOW-NOISE HIGH-SPEED

PRECISION OPERATIONAL AMPLIFIERS

SLOS192 – FEBRUARY 1997

6–25

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

– 75

– 24

TA – Free-Air Temperature – 

°

C

150

– 48

– 50 – 25

0

25

50

75

100 125

– 28

– 32

– 36

– 40

– 44

SHORT-CIRCUIT OUTPUT CURRENT

vs

FREE-AIR TEMPERATURE

IOS – Short-Circuit Output Current – mA

ÁÁ

ÁÁ

ÁÁ

OSI

ÁÁÁÁÁ

ÁÁÁÁÁ

ÁÁÁÁÁ

ÁÁÁÁÁ

VCC

±

 = 

±

15 V

VID = 100 mV

VO = 0

P Package

Figure 33

26

TA – Free-Air Temperature – 

°

C

46

30

34

38

42

125

100

75

50

25

0

– 25

– 50

150

– 75

SHORT-CIRCUIT OUTPUT CURRENT

vs

FREE-AIR TEMPERATURE

IOS – Short-Circuit Output Current – mA

ÁÁ

ÁÁ

ÁÁ

OSI

ÁÁÁÁÁ

ÁÁÁÁÁ

ÁÁÁÁÁ

ÁÁÁÁÁ

VCC

±

 = 

±

15 V

VID = – 100 mV

VO = 0

P Package

Figure 34

ÁÁÁÁ

ÁÁÁÁ

0

0

ICC – Supply Current – mA

VCC

±

 – Supply Voltage – V

6

2

4

6

8

10

12

14

16

18

20

1

2

3

4

5

SUPPLY CURRENT

vs

SUPPLY VOLTAGE

ÁÁ

ÁÁ

CCI

VO = 0

No Load

ÎÎÎÎ

TA = 125

°

C

ÎÎÎÎ

ÎÎÎÎ

TA = 25

°

C

ÎÎÎÎ

ÎÎÎÎ

TA = – 55

°

C

Figure 35

– 75

2.5

TA – Free-Air Temperature – 

°

C

150

5

– 50 – 25

0

25

50

75

100 125

3

3.5

4

4.5

SUPPLY CURRENT

vs

FREE-AIR TEMPERATURE

ICC – Supply Current – mA

ÁÁ

ÁÁ

CCI

ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ

VCC

±

 = 

±

15 V

VO = 0

No Load

Sample Size = 836 Units

From 2 Wafer Lots

Figure 36

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

background image

TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y

EXCALIBUR LOW-NOISE HIGH-SPEED

PRECISION OPERATIONAL AMPLIFIERS

SLOS192 – FEBRUARY 1997

6–26

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 37

V

O

– Output V

oltage 

– 

mV

50

0

– 50

800

600

400

200

0

100

1000

t – Time – ns

– 100

ÎÎÎÎÎ

ÎÎÎÎÎ

ÎÎÎÎÎ

ÎÎÎÎÎ

VCC

±

 = 

±

15 V

RL = 2 k

CL = 100 pF

TA = 25

°

C

See Figure 4

TLE2027

VOLTAGE-FOLLOWER

SMALL-SIGNAL

PULSE RESPONSE

Figure 38

t – Time – 

µ

s

25

0

5

10

15

20

10

5

0

– 5

– 10

15

– 15

ÎÎÎÎÎ

ÎÎÎÎÎ

ÎÎÎÎÎ

ÎÎÎÎÎ

VCC

±

 = 

±

15 V

RL = 2 k

CL = 100 pF

TA = 25

°

C

See Figure 1

V

O

– Output V

oltage – V

TLE2027

VOLTAGE-FOLLOWER

LARGE-SIGNAL

PULSE RESPONSE

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

TA = 25

°

C

See Figure 4

VCC

±

 = 

±

15 V

AVD = 5

RL = 2 k

CL = 100 pF

50

0

– 50

300

200

100

0

100

400

t – Time – ns

– 100

VO – Output V

oltage 

– 

mV

ÁÁ

ÁÁ

V

O

Figure 39

TLE2037

VOLTAGE-FOLLOWER

SMALL-SIGNAL

PULSE RESPONSE

– 15

15

– 10

– 5

0

5

10

TA = 25

°

C

CL = 100 pF

RL = 2 k

AVD = 5

ÎÎÎÎÎÎ

VCC

±

 = 

±

15 V

8

6

4

2

0

10

t – Time – 

µ

s

VO – Output V

oltage – V

ÁÁ

ÁÁ

V

O

ÎÎÎÎÎ

ÎÎÎÎÎ

See Figure 1

Figure 40

TLE2037

VOLTAGE-FOLLOWER

LARGE-SIGNAL

PULSE RESPONSE

background image

TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y

EXCALIBUR LOW-NOISE HIGH-SPEED

PRECISION OPERATIONAL AMPLIFIERS

SLOS192 – FEBRUARY 1997

6–27

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

1

0

Vn – Equivalent Input Noise V

oltage – nVHz

f – Frequency – Hz

100 k

10

10

100

1 k

10 k

2

4

6

8

EQUIVALENT INPUT NOISE VOLTAGE

vs

FREQUENCY

ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ

VCC

±

 = 

±

15 V

RS = 20 

TA = 25

°

C

See Figure 2

Sample Size = 100 Units

From 2 Wafer Lots

V

n

ÁÁ

ÁÁ

ÁÁ

nV/

Hz

Figure 41

NOISE VOLTAGE

(REFERRED TO INPUT)

OVER A

 

10-SECOND INTERVAL

0

– 50

Noise V

oltage – nV

t – Time – s

10

50

2

4

6

8

– 40

– 30

– 20

– 10

0

10

20

30

40

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

VCC

±

 = 

±

15 V

 f = 0.1 to 10 Hz

TA = 25

°

C

Figure 42

Figure 43

20

B

1

– Unity-Gain Bandwidth – MHz

18

16

14

12

20

18

16

14

12

10

8

6

4

2

22

| VCC

±

 | – Supply Voltage – V

10

0

RL = 2 k

CL = 100 pF

TA = 25

°

C

See Figure 3

TLE2027

UNITY-GAIN BANDWIDTH

vs

SUPPLY VOLTAGE

Figure 44

0

48

VCC

±

  – Supply Voltage – V

52

2

4

6

8

10

12

14

16

18

20

49

50

51

ÁÁÁÁÁ

ÁÁÁÁÁ

ÁÁÁÁÁ

ÁÁÁÁÁ

RL = 2 k

CL = 100 pF

TA = 25

°

C

f = 100 kHz

Gain-Bandwidth Product – MHz

TLE2037

GAIN-BANDWIDTH PRODUCT

vs

SUPPLY VOLTAGE

background image

TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y

EXCALIBUR LOW-NOISE HIGH-SPEED

PRECISION OPERATIONAL AMPLIFIERS

SLOS192 – FEBRUARY 1997

6–28

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 45

VCC

±

 = 

±

15 V

RL = 2 k

TA = 25

°

C

See Figure 3

1000

12

8

4

16

10000

CL – Load Capacitance – pF

0

100

B

1

– Unity-Gain Bandwidth – MHz

TLE2027

UNITY-GAIN BANDWIDTH

vs

LOAD CAPACITANCE

100

48

Gain-Bandwidth Product – MHz

CL – Load Capacitance – pF

10000

52

49

50

51

1000

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

TA = 25

°

C

RL = 2 k

VCC

±

 = 

±

15 V

Figure 46

TLE2037

GAIN-BANDWIDTH PRODUCT

vs

LOAD CAPACITANCE

Figure 47

ÎÎÎÎÎ

ÎÎÎÎÎ

ÎÎÎÎÎ

ÎÎÎÎÎ

VCC

±

 = 

±

15 V

AVD = 1

RL = 2 k

CL = 100 pF

See Figure 1

2.8

2.6

2.4

2.2

125

100

75

50

25

0

– 25

– 50

3

150

TA – Free-Air Temperature – 

°

C

SR – Slew Rate – V/  s

2

– 75

µ

TLE2027

SLEW RATE

vs

FREE-AIR TEMPERATURE

Figure 48

– 75

5

TA – Free-Air Temperature – 

°

C

150

10

– 50 – 25

0

25

50

75

100 125

6

7

8

9

s

µ

ÁÁÁÁÁ

ÁÁÁÁÁ

ÁÁÁÁÁ

ÁÁÁÁÁ

ÁÁÁÁÁ

AVD = 5

RL = 2 k

CL = 100 pF

See Figure 1

SR – Slew Rate – V/

ÎÎÎÎÎÎ

ÎÎÎÎÎÎ

VCC

±

 = 

±

15 V

TLE2037

SLEW RATE

vs

FREE-AIR TEMPERATURE

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

background image

TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y

EXCALIBUR LOW-NOISE HIGH-SPEED

PRECISION OPERATIONAL AMPLIFIERS

SLOS192 – FEBRUARY 1997

6–29

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 49

56

°

54

°

52

°

50

°

48

°

46

°

44

°

20

18

16

14

12

10

8

6

4

2

58

°

22

| VCC

±

 | – Supply Voltage – V

 – Phase Margin

42

°

0

ÎÎÎÎÎ

ÎÎÎÎÎ

ÎÎÎÎÎ

ÎÎÎÎÎ

RL = 2 k

CL = 100 pF

TA = 25

°

C

See Figure 3

ÁÁ

ÁÁ

m

φ

TLE2027

PHASE MARGIN

vs

SUPPLY VOLTAGE

Figure 50

0

 m

VCC

±

  – Supply Voltage – V

2

4

6

8

10

12

14

16

18

20

38

°

40

°

42

°

44

°

46

°

48

°

50

°

52

°

φ

ÁÁÁÁÁ

ÁÁÁÁÁ

ÁÁÁÁÁ

ÁÁÁÁÁ

TA = 25

°

C

CL = 100 pF

AVD = 5

RL = 2 k

 – Phase Margin

TLE2037

PHASE MARGIN

vs

SUPPLY VOLTAGE

Figure 51

1000

40

°

20

°

60

°

CL – Load Capacitance – pF

0

°

100

 – Phase Margin

ÁÁ

ÁÁ

m

φ

TLE2027

PHASE MARGIN

vs

LOAD CAPACITANCE

ÎÎÎÎÎ

ÎÎÎÎÎ

ÎÎÎÎÎ

ÎÎÎÎÎ

VCC

±

 = 

±

15 V

RL = 2 k

TA = 25

°

C

See Figure 3

10

°

30

°

50

°

Figure 52

100

0

°

CL – Load Capacitance – pF

10000

1000

10

°

20

°

30

°

40

°

50

°

60

°

ÁÁÁÁÁ

ÁÁÁÁÁ

ÁÁÁÁÁ

VCC

±

 = 

±

15 V

RL = 2 k

TA = 25

°

C

 m

φ

 – Phase Margin

TLE2037

PHASE MARGIN

vs

LOAD CAPACITANCE

background image

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y

EXCALIBUR LOW-NOISE HIGH-SPEED

PRECISION OPERATIONAL AMPLIFIERS

SLOS192 – FEBRUARY 1997

6–30

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 53

 – Phase Margin

ÁÁ

ÁÁ

m

φ

60

°

55

°

50

°

45

°

40

°

125

100

75

50

25

0

– 25

– 50

65

°

150

TA – Free-Air Temperature – 

°

C

35

°

– 75

ÎÎÎÎÎ

ÎÎÎÎÎ

ÎÎÎÎÎ

VCC

±

 = 

±

15 V

RL = 2 k

TA = 25

°

C

See Figure 3

TLE2027

PHASE MARGIN

vs

FREE-AIR TEMPERATURE

Figure 54

– 75

45

°

TA – Free-Air Temperature – 

°

C

150

– 50 – 25

0

25

50

75

100 125

49

°

51

°

53

°

55

°

47

°

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

CL = 100 pF

RL = 2 k

AVD = 5

VCC

±

 = 

±

15 V

 m

φ

 – Phase Margin

TLE2037

PHASE MARGIN

vs

FREE-AIR TEMPERATURE

background image

TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y

EXCALIBUR LOW-NOISE HIGH-SPEED

PRECISION OPERATIONAL AMPLIFIERS

SLOS192 – FEBRUARY 1997

6–31

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

APPLICATION INFORMATION

input offset voltage nulling

The TLE2027 and TLE2037 series offers external null pins that can be used to further reduce the input offset

voltage. The circuits of Figure 55 can be connected as shown if the feature is desired. If external nulling is not

needed, the null pins may be left disconnected.

4.7 k

1 k

VCC +

OUT

IN –

IN +

VCC –

+

4.7 k

+

VCC –

OUT

VCC +

10 k

IN –

IN +

(a) STANDARD ADJUSTMENT

(b) ADJUSTMENT WITH IMPROVED SENSITIVITY

Figure 55. Input Offset Voltage Nulling Circuits

voltage-follower applications

The TLE2027 circuitry includes input-protection diodes to limit the voltage across the input transistors; however,

no provision is made in the circuit to limit the current if these diodes are forward biased. This condition can occur

when the device is operated in the voltage-follower configuration and driven with a fast, large-signal pulse. It

is recommended that a feedback resistor be used to limit the current to a maximum of 1 mA to prevent

degradation of the device. Also, this feedback resistor forms a pole with the input capacitance of the device.

For feedback resistor values greater than 10 k

, this pole degrades the amplifier phase margin. This problem

can be alleviated by adding a capacitor (20 pF to 50 pF) in parallel with the feedback resistor (see Figure 56).

RF

IF 

 1 mA

+

VI

VO

VCC –

VCC

CF = 20 to 50 pF

Figure 56. Voltage Follower

background image

TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y

EXCALIBUR LOW-NOISE HIGH-SPEED

PRECISION OPERATIONAL AMPLIFIERS

SLOS192 – FEBRUARY 1997

6–32

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

APPLICATION INFORMATION

macromodel information

Macromodel information provided was derived using Microsim

Parts

, the model generation software used

with Microsim

 PSpice

. The Boyle macromodel (see Note 6) and subcircuit in Figure 57, Figure 58, and

Figure 59 were generated using the TLE20x7 typical electrical and operating characteristics at 25

°

C. Using this

information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most

cases):

Maximum positive output voltage swing

Maximum negative output voltage swing

Slew rate

Quiescent power dissipation

Input bias current

Open-loop voltage amplification

Gain-bandwidth product

Common-mode rejection ratio

Phase  margin

DC output resistance

AC output resistance

Short-circuit output current limit

NOTE 6:  G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers”, IEEE Journal

of Solid-State Circuits, SC-9, 353 (1974).

8

ro2

7

12

VCC +

IN +

IN –

VCC –

1

2

dp

rp

11

rc1

c1

rc2

Q2

Q1

13

14

3

re1

re2

4

lee

ve

+

54

10

ree

cee

53

vc

+

r2

6

gcm

ga

de

dc

vb

9

+

egnd

99

+

fb

C2

vlim

+

ro1

5

OUT

90

hlim

+ dip

91

92

dln

vip

vin

+

+

Figure 57. Boyle Macromodel

PSpice and Parts are trademarks of MicroSim Corporation.

background image

TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y

EXCALIBUR LOW-NOISE HIGH-SPEED

PRECISION OPERATIONAL AMPLIFIERS

SLOS192 – FEBRUARY 1997

6–33

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

APPLICATION INFORMATION

macromodel information (continued)

.subckt TLE2027 1 2 3 4 5

*

c1

11

12

4.003E-12

c2

6

7

20.00E-12

dc

5

53

dz

de

54

5

dz

dlp

90

91

dz

dln

92

90

dx

dp

4

3

dz

egnd

99

0

poly(2) (3,0)

(4,0) 0 5 .5

fb

7

99

poly(5) vb vc

ve vlp vln 0 954.8E6 –1E9 1E9 1E9

–1E9

ga

6

0

11  12

2.062E-3

gcm

0

6

10  99

531.3E-12

iee

10

4

dc  56.01E-6

hlim

90

0

vlim 1K

q1

11

2

13 qx

Figure 58. TLE2027 Macromodel Subcircuit

q2

12

1

14 qx

r2

6

9

100.0E3

rc1

3

11

530.5

rc2

3

12

530.5

re1

13

10

–393.2

re2

14

10

–393.2

ree

10

99

3.571E6

ro1

8

5

25

ro2

7

99

25

rp

3

4

8.013E3

vb

9

0

dc  0

vc

3

53

dc  2.400

ve

54

4

dc  2.100

vlim

7

8

dc  0

vlp

91

0

dc  40

vln

0

92

dc  40

.modeldx D(Is=800.0E-18)

.modelqx NPN(Is=800.0E-18

Bf=7.000E3)

.ends

.subckt TLE2037 1 2 3 4 5

*

c1

11

12

4.003E–12

c2

6

7

7.500E–12

dc

5

53

dz

de

54

5

dz

dlp

90

91

dz

dln

92

90

dx

dp

4

3

dz

egnd

99

0

poly(2)

(3,0)

   (4,0)  0  .5  .5

fb

7

99

poly(5)

vb vc

   ve vip vln 0 923.4E6 A800E6

   800E6 800E6 A800E6

ga

6

0

11 12 2.121E–3

gcm

0

6

10 99 597.7E–12

iee

10

4

dc 56.26E–6

hlim

90

0

vlim 1K

q1

11

2

13 qx

Figure 59. TLE2037 Macromodel Subcircuit

q2

12

1

14 qz

r2

6

9

100.0E3

rc1

3

11

471.5

rc2

3

12

471.5

re1

13

10

A448

re2

14

10

A448

ree

10

99

3.555E6

ro1

8

5

25

ro2

7

99

25

rp

3

4

8.013E3

vb

9

0

dc 0

vc

3

53

dc  2.400

ve

54

4

dc  2.100

vlim

7

8

dc  0

vlp

91

0

dc  40

vln

0

92

dc  40

.model

dxD(Is=800.0E–18)

.model

qxNPN(Is=800.0E–18

   

Bf=7.031E3)

.ends

background image

TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y

EXCALIBUR LOW-NOISE HIGH-SPEED

PRECISION OPERATIONAL AMPLIFIERS

SLOS192 – FEBRUARY 1997

6–34

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

background image

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue

any product or service without notice, and advise customers to obtain the latest version of relevant information

to verify, before placing orders, that information being relied on is current and complete. All products are sold

subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those

pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in

accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent

TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily

performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF

DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL

APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR

WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER

CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO

BE FULLY AT THE CUSTOMER’S RISK.

In order to minimize risks associated with the customer’s applications, adequate design and operating

safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent

that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other

intellectual property right of TI covering or relating to any combination, machine, or process in which such

semiconductor products or services might be or are used. TI’s publication of information regarding any third

party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

Copyright 

©

 1998, Texas Instruments Incorporated