background image

TLC27L4, TLC27L4A, TLC27L4B, TLC27L4Y, TLC27L9

LinCMOS

 PRECISION QUAD OPERATIONAL AMPLIFIERS

 

 

SLOS053C – OCTOBER 1987 – REVISED AUGUST 1994

1

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

D

Trimmed Offset Voltage:

TLC27L9 . . . 900 

µ

V Max at 25

°

C,

V

DD

 = 5 V

D

Input Offset Voltage Drift . . . Typically

0.1 

µ

V/Month, Including the First 30 Days

D

Wide Range of Supply Voltages Over

Specified Temperature Range:

0

°

C to 70

°

C . . . 3  V  to  16  V

– 40

°

C to 85

°

C . . . 4  V  to  16  V

– 55

°

C to 125

°

C . . . 4  V  to  16  V

D

Single-Supply Operation

D

Common-Mode Input Voltage Range

Extends Below the Negative Rail (C-Suffix,

I-Suffix Types)

D

Ultra-Low Power . . . Typically 195 

µ

W

at 25

°

C, V

DD

 = 5 V

D

Output Voltage Range includes Negative

Rail

D

High Input Impedance . . . 10

12

 

Ω 

Typ

D

ESD-Protection Circuitry

D

Small-Outline Package Option Also

Available in Tape and Reel

D

Designed-In Latch-Up Immunity

     

description

The TLC27L4 and TLC27L9 quad operational

amplifiers combine a wide range of input offset

voltage grades with low offset voltage drift, high

input impedance, extremely low power, and high

gain.

These devices use Texas instruments silicon-gate

LinCMOS

 technology, which provides offset

voltage stability far exceeding the stability

available with conventional metal-gate pro-

cesses.

The extremely high input impedance, low bias

currents, and low-power consumption make

these cost-effective devices ideal for high-gain,

low- frequency, low-power applications. Four

offset voltage grades are available (C-suffix and

I-suffix types), ranging from the low-cost TLC27L4

(10 mV) to the high-precision TLC27L9 (900 

µ

V).

These advantages, in combination with good

common-mode rejection and supply voltage

rejection, make these devices a good choice for

new state-of-the-art designs as well as for

upgrading existing designs.

Copyright 

©

 1994, Texas Instruments Incorporated

PRODUCTION DATA information is current as of publication date.

Products conform to specifications per the terms of Texas Instruments

standard warranty. Production processing does not necessarily include

testing of all parameters.

 

LinCMOS is a trademark of Texas Instruments Incorporated.

35

30

25

20

15

10

5

600

0

– 600

40

1200

VIO – Input Offset Voltage – 

µ

V

Percentage of Units – %

0

– 1200

N Package

TA = 25

°

C

VDD = 5 V

299 Units Tested From 2 Wafer Lots

DISTRIBUTION OF TLC27L9

INPUT OFFSET VOLTAGE

1

2

3

5

6

7

14

13

12

11

10

9

8

1OUT

1IN –

1IN +

V

DD

2IN +

2IN –

2OUT

4OUT

4IN –

4IN +

GND

3IN +

3IN –

3OUT

D, J, N, OR PW PACKAGE

(TOP VIEW)

3

2

1 20 19

9 10 11 12 13

4

5

6

7

8

18

17

16

15

14

4IN +

NC

GND

NC

3IN +

1IN +

NC

V

DD

NC

2IN +

FK PACKAGE

(TOP VIEW)

1IN –

1OUT

NC

3OUT

3IN –

4OUT

4IN –

2IN –

2OUT

NC

NC – No internal connection

background image

TLC27L4, TLC27L4A, TLC27L4B, TLC27L4Y, TLC27L9

LinCMOS

 PRECISION QUAD OPERATIONAL AMPLIFIERS

 

 

SLOS053C – OCTOBER 1987 – REVISED AUGUST 1994

2

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

description (continued)

In general, many features associated with bipolar technology are available on LinCMOS

 operational

amplifiers, without the power penalties of bipolar technology. General applications such as transducer

interfacing, analog calculations, amplifier blocks, active filters, and signal buffering are easily designed with the

TLC27L4 and TLC27L9. The devices also exhibit low voltage single-supply operation and ultra-low power

consumption, making them ideally suited for remote and inaccessible battery-powered applications. The

common-mode input voltage range includes the negative rail.

A wide range of packaging options is available, including small-outline and chip-carrier versions for high-density

system applications.

The device inputs and outputs are designed to withstand –100-mA surge currents without sustaining latch-up.

The TLC27L4 and TLC27L9 incorporate internal ESD-protection circuits that prevent functional failures at

voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2; however, care should be exercised in

handling these devices, as exposure to ESD may result in the degradation of the device parametric

performance.

The C-suffix devices are characterized for operation from 0

°

C to 70

°

C. The I-suffix devices are characterized

for operation from – 40

°

C to 85

°

C. The M-suffix devices are characterized for operation from – 55

°

C to 125

°

C.

AVAILABLE OPTIONS

PACKAGED DEVICES

CHIP

TA

VIOmax

AT 25

°

C

SMALL 

OUTLINE

(D)

CHIP

CARRIER

(FK)

CERAMIC

DIP

(J)

PLASTIC 

DIP

(N)

TSSOP

(PW)

CHIP

FORM

(Y)

900 

µ

V

TLC27L9CD

TLC27L9CN

0

°

C to 70

°

C

2 mV

TLC27L4BCD

TLC27L4BCN

0

°

C to 70

°

C

5 mV

TLC27L4ACD

TLC27L4ACN

10 mV

TLC27L4CD

TLC27L4CN

TLC27L4CPW

TLC27L4Y

900 

µ

V

TLC27L9ID

TLC27L9IN

40

°

C to 85

°

C

2 mV

TLC27L4BID

TLC27L4BIN

– 40

°

C to 85

°

C

5 mV

TLC27L4AID

TLC27L4AIN

10 mV

TLC27L4ID

TLC27L4IN

55

°

C to 125

°

C

900 

µ

V

TLC27L9MD

TLC27L9MFK

TLC27L9MJ

TLC27L9MN

– 55

°

C to 125

°

C

10 mV

TLC27L4MD

TLC27L4MFK

TLC27L4MJ

TLC27L4MN

The D package is available taped and reeled. Add R suffix to the device type (e.g., TLC27L9CDR).

background image

TLC27L4, TLC27L4A, TLC27L4B, TLC27L4Y, TLC27L9

LinCMOS

 PRECISION QUAD OPERATIONAL AMPLIFIERS

 

 

SLOS053C – OCTOBER 1987 – REVISED AUGUST 1994

3

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

equivalent schematic (each amplifier)

VDD

P4

P3

R6

N5

R2

P2

R1

P1

IN –

IN +

N1

R3

D1

R4

D2

N2

GND

N3

R5

C1

N4

R7

N6

N7

OUT

P6

P5

background image

TLC27L4, TLC27L4A, TLC27L4B, TLC27L4Y, TLC27L9

LinCMOS

 PRECISION QUAD OPERATIONAL AMPLIFIERS

 

 

SLOS053C – OCTOBER 1987 – REVISED AUGUST 1994

4

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TLC27L4Y chip information

These chips, when properly assembled, display characteristics similar to the TLC27L4C. Thermal compression

or ultrasonic bonding may be used on the doped-aluminum bonding pads. Chips may be mounted with

conductive epoxy or a gold-silicon preform.

BONDING PAD ASSIGNMENTS

CHIP THICKNESS: 15 TYPICAL

BONDING PADS: 4 

×

 4 MINIMUM

TJmax = 150

°

C

TOLERANCES ARE 

±

10%.

ALL DIMENSIONS ARE IN MILS.

PIN (11) IS INTERNALLY CONNECTED

TO BACKSIDE OF CHIP.

+

1OUT

1IN +

1IN –

VDD

(4)

(6)

(3)

(2)

(5)

(1)

+

(7)

2IN +

2IN –

2OUT

(11)

GND

+

3OUT

3IN +

3IN –

(13)

(10)

(9)

(12)

(8)

+

(14)

4OUT

4IN +

4IN –

68

108

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

background image

TLC27L4, TLC27L4A, TLC27L4B, TLC27L4Y, TLC27L9

LinCMOS

 PRECISION QUAD OPERATIONAL AMPLIFIERS

 

 

SLOS053C – OCTOBER 1987 – REVISED AUGUST 1994

5

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

absolute maximum ratings over operating free-air temperature (unless otherwise noted)

Supply voltage, V

DD

 (see Note 1) 

18 V

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Differential input voltage, V

ID

 (see Note 2) 

±

V

DD

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Input voltage range, V

I

 (any input) 

– 0.3 V to V

DD

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Input current, I

I

 

±

5 mA

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Output current, I

O

 (each output) 

±

30 mA

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Total current into V

DD

 

45 mA

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Total current out of GND 

45 mA

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Duration of short-circuit current at (or below) 25

°

C (see Note 3) 

unlimited

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Continuous total dissipation 

See Dissipation Rating Table

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Operating free-air temperature, T

A

: C suffix 

0

°

C to 70

°

C

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

I suffix 

– 40

°

C to 85

°

C

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

M suffix 

– 55

°

C to 125

°

C

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Storage temperature range 

– 65

°

C to 150

°

C

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Case temperature for 60 seconds: FK package 

260

°

C

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D, N, or PW package 

260

°

C

. . . . . . . . . . . . 

Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package 

300

°

C

. . . . . . . . . . . . . . . . . . . . . 

† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and

functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not

implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES:

1. All voltage values, except differential voltages, are with respect to network ground.

2. Differential voltages are at IN+ with respect to IN –.

3. The output may be shorted to either supply. Temperature and /or supply voltages must be limited to ensure that the maximum

dissipation rating is not exceeded (see application section).

DISSIPATION RATING TABLE

PACKAGE

TA 

 25

°

C

POWER RATING

DERATING FACTOR

ABOVE TA = 25

°

C

TA = 70

°

C

POWER RATING

TA = 85

°

C

POWER RATING

TA = 125

°

C

POWER RATING

D

950 mW

7.6 mW/

°

C

608 mW

494 mW

FK

1375 mW

11.0 mW/

°

C

880 mW

715 mW

275 mW

J

1375 mW

11.0 mW/

°

C

880 mW

715 mW

275 mW

N

1575 mW

12.6 mW/

°

C

1008 mW

819 mW

PW

700 mW

5.6 mW/

°

C

448 mW

recommended operating conditions

C SUFFIX

I SUFFIX

M SUFFIX

UNIT

MIN

MAX

MIN

MAX

MIN

MAX

UNIT

Supply voltage, VDD

3

16

4

16

4

16

V

Common mode input voltage VIC

VDD = 5 V

– 0.2

3.5

– 0.2

3.5

0

3.5

V

Common-mode input voltage, VIC

VDD = 10 V

– 0.2

8.5

– 0.2

8.5

0

8.5

V

Operating free-air temperature, TA

0

70

– 40

85

– 55

125

°

C

background image

TLC27L4, TLC27L4A, TLC27L4B, TLC27L4Y, TLC27L9

LinCMOS

 PRECISION QUAD OPERATIONAL AMPLIFIERS

 

 

SLOS053C – OCTOBER 1987 – REVISED AUGUST 1994

6

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

electrical characteristics at specified free-air temperature, V

DD

 = 5 V (unless otherwise noted)

PARAMETER

TEST CONDITIONS

TA†

TLC27L4C

TLC27L4AC

TLC27L4BC

TLC27L9C

UNIT

MIN

TYP

MAX

TLC27L4C

VO = 1.4 V,

VIC = 0,

25

°

C

1.1

10

TLC27L4C

O

,

RS = 50 

,

IC

,

RL = 1 M

Full range

12

mV

TLC27L4AC

VO = 1.4 V,

VIC = 0,

25

°

C

0.9

5

mV

VIO

Input offset voltage

TLC27L4AC

O

,

RS = 50 

,

IC

,

RL = 1 M

Full range

6.5

VIO

Input offset voltage

TLC27L4BC

VO = 1.4 V,

VIC = 0,

25

°

C

240

2000

TLC27L4BC

O

,

RS = 50 

,

IC

,

RL = 1 M

Full range

3000

µ

V

TLC27L9C

VO = 1.4 V,

VIC = 0,

25

°

C

200

900

µ

V

TLC27L9C

O

,

RS = 50 

,

IC

,

RL = 1 M

Full range

1500

α

VIO

Average temperature coefficient of input

offset voltage

25

°

C to 

70

°

C

1.1

µ

V/

°

C

IIO

Input offset current (see Note 4)

VO = 2 5 V

VIC = 2 5 V

25

°

C

0.1

pA

IIO

Input offset current (see Note 4)

VO = 2.5 V,

VIC = 2.5 V

70

°

C

7

300

pA

IIB

Input bias current (see Note 4)

VO = 2 5 V

VIC = 2 5 V

25

°

C

0.6

pA

IIB

Input bias current (see Note 4)

VO = 2.5 V,

VIC = 2.5 V

70

°

C

40

600

pA

VICR

Common mode input voltage range 

25

°

C

– 0.2

to

4

– 0.3

to

4.2

V

VICR

g

g

(see Note 5)

Full range

– 0.2

to

3.5

V

25

°

C

3.2

4.1

VOH

High-level output voltage

VID = 100 mV,

RL = 1 M

0

°

C

3

4.1

V

70

°

C

3

4.2

25

°

C

0

50

VOL

Low-level output voltage

VID = –100 mV,

IOL = 0

0

°

C

0

50

mV

70

°

C

0

50

L

i

l diff

ti l

lt

25

°

C

50

520

AVD

Large-signal differential voltage

amplification

VO = 2.5 V to 2 V,

RL = 1 M

0

°

C

50

680

V/mV

am lification

70

°

C

50

380

25

°

C

65

94

CMRR

Common-mode rejection ratio

VIC = VICRmin

0

°

C

60

95

dB

70

°

C

60

95

S

l

lt

j

ti

ti

25

°

C

70

97

kSVR

Supply-voltage rejection ratio

(

VDD /

VIO)

VDD = 5 V to 10 V, VO = 1.4 V

0

°

C

60

97

dB

(

VDD /

VIO)

70

°

C

60

98

V

2 5 V

V

2 5 V

25

°

C

40

68

IDD

Supply current (four amplifiers)

VO = 2.5 V,

No load

VIC = 2.5 V,

0

°

C

48

84

µ

A

No load

70

°

C

31

56

† Full range is 0

°

C to 70

°

C.

NOTES:

4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

5. This range also applies to each input individually.

background image

TLC27L4, TLC27L4A, TLC27L4B, TLC27L4Y, TLC27L9

LinCMOS

 PRECISION QUAD OPERATIONAL AMPLIFIERS

 

 

SLOS053C – OCTOBER 1987 – REVISED AUGUST 1994

7

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

electrical characteristics at specified free-air temperature, V

DD

 = 10 V (unless otherwise noted)

PARAMETER

TEST CONDITIONS

TA†

TLC27L4C

TLC27L4AC

TLC27L4BC

TLC27L9C

UNIT

MIN

TYP

MAX

TLC27L4C

VO = 1.4 V,

VIC = 0,

25

°

C

1.1

10

TLC27L4C

O

,

RS = 50 

,

IC

,

RL = 1 M

Full range

12

mV

TLC27L4AC

VO = 1.4 V,

VIC = 0,

25

°

C

0.9

5

mV

VIO

Input offset voltage

TLC27L4AC

O

,

RS = 50 

,

IC

,

RL = 1 M

Full range

6.5

VIO

Input offset voltage

TLC27L4BC

VO = 1.4 V,

VIC = 0,

25

°

C

260

2000

TLC27L4BC

O

,

RS = 50 

,

IC

,

RL = 1 M

Full range

3000

µ

V

TLC27L9C

VO = 1.4 V,

VIC = 0,

25

°

C

210

1200

µ

V

TLC27L9C

O

,

RS = 50 

,

IC

,

RL = 1 M

Full range

1900

α

VIO

Average temperature coefficient of 

input offset voltage

25

°

C to 

70

°

C

1

µ

V/

°

C

IIO

Input offset current (see Note 4)

VO = 5 V

VIC = 5 V

25

°

C

0.1

pA

IIO

Input offset current (see Note 4)

VO = 5 V,

VIC = 5 V

70

°

C

7

300

pA

IIB

Input bias current (see Note 4)

VO = 5 V

VIC = 5 V

25

°

C

0.7

pA

IIB

Input bias current (see Note 4)

VO = 5 V,

VIC = 5 V

70

°

C

50

600

pA

VICR

Common-mode input voltage range

25

°

C

– 0.2

to

9

– 0.3

to

9.2

V

VICR

g

g

(see Note 5)

Full range

– 0.2

to

8.5

V

25

°

C

8

8.9

VOH

High-level output voltage

VID = 100 mV,

RL = 1 M

0

°

C

7.8

8.9

V

70

°

C

7.8

8.9

25

°

C

0

50

VOL

Low-level output voltage

VID = –100 mV,

IOL = 0

0

°

C

0

50

mV

70

°

C

0

50

L

i

l diff

ti l

lt

25

°

C

50

870

AVD

Large-signal differential voltage

amplification

VO = 1 V to 6 V,

RL = 1 M

0

°

C

50

1020

V/mV

am lification

70

°

C

50

660

25

°

C

65

97

CMRR

Common-mode rejection ratio

VIC = VICRmin

0

°

C

60

97

dB

70

°

C

60

97

S

l

lt

j

ti

ti

25

°

C

70

97

kSVR

Supply-voltage rejection ratio

(

VDD /

VIO)

VDD = 5 V to 10 V, VO = 1.4 V

0

°

C

60

97

dB

(

VDD /

VIO)

70

°

C

60

98

V

5 V

V

5 V

25

°

C

57

92

IDD

Supply current (four amplifiers)

VO = 5 V,

No load

VIC = 5 V,

0

°

C

72

132

µ

A

No load

70

°

C

44

80

† Full range is 0

°

C to 70

°

C.

NOTES:

4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

5. This range also applies to each input individually.

background image

TLC27L4, TLC27L4A, TLC27L4B, TLC27L4Y, TLC27L9

LinCMOS

 PRECISION QUAD OPERATIONAL AMPLIFIERS

 

 

SLOS053C – OCTOBER 1987 – REVISED AUGUST 1994

8

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

electrical characteristics at specified free-air temperature, V

DD 

=

 

5 V (unless otherwise noted)

PARAMETER

TEST CONDITIONS

TA†

TLC27L4I

TLC27L4AI

TLC27L4BI

TLC27L9I

UNIT

MIN

TYP

MAX

TLC27L4I

VO = 1.4 V,

VIC = 0,

25

°

C

1.1

10

TLC27L4I

O

,

RS = 50 

,

IC

,

RL = 1 M

Full range

13

mV

TLC27L4AI

VO = 1.4 V,

VIC = 0,

25

°

C

0.9

5

mV

VIO

Input offset voltage

TLC27L4AI

O

,

RS = 50 

,

IC

,

RL = 1 M

Full range

7

VIO

Input offset voltage

TLC27L4BI

VO = 1.4 V,

VIC = 0,

25

°

C

240

2000

TLC27L4BI

O

,

RS = 50 

,

IC

,

RL = 1 M

Full range

3500

µ

V

TLC27L9I

VO = 1.4 V,

VIC = 0,

25

°

C

200

900

µ

V

TLC27L9I

O

,

RS = 50 

,

IC

,

RL = 1 M

Full range

2000

α

VIO

Average temperature coefficient of input

offset voltage

25

°

C to 

85

°

C

1.1

µ

V/

°

C

IIO

Input offset current (see Note 4)

VO = 2 5 V

VIC = 2 5 V

25

°

C

0.1

pA

IIO

Input offset current (see Note 4)

VO = 2.5 V,

VIC = 2.5 V

85

°

C

24

1000

pA

IIB

Input bias current (see Note 4)

VO = 2 5 V

VIC = 2 5 V

25

°

C

0.6

pA

IIB

Input bias current (see Note 4)

VO = 2.5 V,

VIC = 2.5 V

85

°

C

200

2000

pA

VICR

Common-mode input voltage range 

25

°

C

– 0.2

to

4

– 0.3

to

4.2

V

VICR

g

g

(see Note 5)

Full range

– 0.2

to

3.5

V

25

°

C

3.2

4.1

VOH

High-level output voltage

VID = 100 mV,

RL = 1 M

– 40

°

C

3

4.1

V

85

°

C

3

4.2

25

°

C

0

50

VOL

Low-level output voltage

VID = –100 mV,

IOL = 0

– 40

°

C

0

50

mV

85

°

C

0

50

L

i

l diff

ti l

lt

25

°

C

50

480

AVD

Large-signal differential voltage

amplification

VO = 0.25 V to 2 V,

RL = 1 M

– 40

°

C

50

900

V/mV

am lification

85

°

C

50

330

25

°

C

65

94

CMRR

Common-mode rejection ratio

VIC = VICRmin

– 40

°

C

60

95

dB

85

°

C

60

95

S

l

lt

j

ti

ti

25

°

C

70

97

kSVR

Supply-voltage rejection ratio

(

VDD /

VIO)

VDD = 5 V to 10 V,

VO = 1.4 V

– 40

°

C

60

97

dB

(

VDD /

VIO)

85

°

C

60

98

V

2 5 V

V

2 5 V

25

°

C

39

68

IDD

Supply current (four amplifiers)

VO = 2.5 V,

No load

VIC = 2.5 V,

– 40

°

C

62

108

µ

A

No load

85

°

C

29

52

† Full range is  – 40

°

C to 85

°

C.

NOTES:

4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

5. This range also applies to each input individually.

background image

TLC27L4, TLC27L4A, TLC27L4B, TLC27L4Y, TLC27L9

LinCMOS

 PRECISION QUAD OPERATIONAL AMPLIFIERS

 

 

SLOS053C – OCTOBER 1987 – REVISED AUGUST 1994

9

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

electrical characteristics at specified free-air temperature, V

DD

 = 10 V (unless otherwise noted)

PARAMETER

TEST CONDITIONS

TA†

TLC27L4I

TLC27L4AI

TLC27L4BI

TLC27L9I

UNIT

MIN

TYP

MAX

TLC27L4I

VO = 1.4 V,

VIC = 0,

25

°

C

1.1

10

TLC27L4I

O

,

RS = 50 

,

IC

,

RL = 1 M

Full range

13

mV

TLC27L4AI

VO = 1.4 V,

VIC = 0,

25

°

C

0.9

5

mV

VIO

Input offset voltage

TLC27L4AI

O

,

RS = 50 

,

IC

,

RL = 1 M

Full range

7

VIO

Input offset voltage

TLC27L4BI

VO = 1.4 V,

VIC = 0,

25

°

C

260

2000

TLC27L4BI

O

,

RS = 50 

,

IC

,

RL = 1 M

Full range

3500

µ

V

TLC27L9I

VO = 1.4 V,

VIC = 0,

25

°

C

210

1200

µ

V

TLC27L9I

O

,

RS = 50 

,

IC

,

RL = 1 M

Full range

2900

α

VIO

Average temperature coefficient of input

offset voltage

25

°

C to 

85

°

C

1

µ

V/

°

C

IIO

Input offset current (see Note 4)

VO = 5 V

VIC = 5 V

25

°

C

0.1

pA

IIO

Input offset current (see Note 4)

VO = 5 V,

VIC = 5 V

85

°

C

26

1000

pA

IIB

Input bias current (see Note 4)

VO = 5 V

VIC = 5 V

25

°

C

0.7

pA

IIB

Input bias current (see Note 4)

VO = 5 V,

VIC =.5 V

85

°

C

220

2000

pA

VICR

Common-mode input voltage range 

25

°

C

– 0.2

to

9

– 0.3

to

9.2

V

VICR

g

g

(see Note 5)

Full range

– 0.2

to

8.5

V

25

°

C

8

8.9

VOH

High-level output voltage

VID = 100 mV,

RL = 1 M

– 40

°

C

7.8

8.9

V

85

°

C

7.8

8.9

25

°

C

0

50

VOL

Low-level output voltage

VID = –100 mV,

IOL = 0

– 40

°

C

0

50

mV

85

°

C

0

50

L

i

l diff

ti l

lt

25

°

C

50

800

AVD

Large-signal differential voltage

amplification

VO = 1 V to 6 V,

RL = 1 M

– 40

°

C

50

1550

V/mV

am lification

85

°

C

50

585

25

°

C

65

97

CMRR

Common-mode rejection ratio

VIC = VICRmin

– 40

°

C

60

97

dB

85

°

C

60

98

S

l

lt

j

ti

ti

25

°

C

70

97

kSVR

Supply-voltage rejection ratio

(

VDD/

VIO)

VDD = 5 V to 10 V,

VO = 1.4 V

– 40

°

C

60

97

dB

(

VDD/

VIO)

85

°

C

60

98

V

5 V

V

5 V

25

°

C

57

92

IDD

Supply current (four amplifiers)

VO = 5 V,

No load

VIC = 5 V,

– 40

°

C

98

172

µ

A

No load

85

°

C

40

72

† Full range is  – 40

°

C to 85

°

C.

NOTES:

4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

5. This range also applies to each input individually.

background image

TLC27L4, TLC27L4A, TLC27L4B, TLC27L4Y, TLC27L9

LinCMOS

 PRECISION QUAD OPERATIONAL AMPLIFIERS

 

 

SLOS053C – OCTOBER 1987 – REVISED AUGUST 1994

10

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

electrical characteristics at specified free-air temperature, V

DD

 = 5 V (unless otherwise noted)

PARAMETER

TEST CONDITIONS

TA†

TLC27L4M

TLC27L9M

UNIT

A

MIN

TYP

MAX

TLC27L4M

VO = 1.4 V,

VIC = 0,

25

°

C

1.1

10

mV

VIO

Input offset voltage

TLC27L4M

O

,

RS = 50 

,

IC

,

RL = 1 M

Full range

12

mV

VIO

Input offset voltage

TLC27L9M

VO = 1.4 V,

VIC = 0,

25

°

C

200

900

µ

V

TLC27L9M

O

,

RS = 50 

,

IC

,

RL = 1 M

Full range

3750

µ

V

α

VIO

Average temperature coefficient of input

offset voltage

25

°

C to 

125

°

C

1.4

µ

V/

°

C

IIO

Input offset current (see Note 4)

VO = 2 5 V

VIC = 2 5 V

25

°

C

0.1

pA

IIO

Input offset current (see Note 4)

VO = 2.5 V,

VIC = 2.5 V

125

°

C

1.4

15

nA

IIB

Input bias current (see Note 4)

VO = 2 5 V

VIC = 2 5 V

25

°

C

0.6

pA

IIB

Input bias current (see Note 4)

VO = 2.5 V,

VIC = 2.5 V

125

°

C

9

35

nA

VICR

Common-mode input voltage range

25

°

C

– 0.2

to

4

– 0.3

to

4.2

V

VICR

g

g

(see Note 5)

Full range

– 0.2

to

3.5

V

25

°

C

3.2

4.1

VOH

High-level output voltage

VID = 100 mV,

RL = 1 M

– 55

°

C

3

4.1

V

125

°

C

3

4.2

25

°

C

0

50

VOL

Low-level output voltage

VID = –100 mV,

IOL = 0

– 55

°

C

0

50

mV

125

°

C

0

50

L

i

l diff

ti l

lt

25

°

C

50

480

AVD

Large-signal differential voltage

amplification

VO = 0.25 V to 2 V,

RL = 1 M

– 55

°

C

25

950

V/mV

am lification

125

°

C

25

200

25

°

C

65

94

CMRR

Common-mode rejection ratio

VIC = VICRmin

– 55

°

C

60

95

dB

125

°

C

60

85

S

l

lt

j

ti

ti

25

°

C

70

97

kSVR

Supply-voltage rejection ratio

(

VDD /

VIO)

VDD = 5 V to 10 V,

VO = 1.4 V

– 55

°

C

60

97

dB

(

VDD /

VIO)

125

°

C

60

98

V

2 5 V

V

2 5 V

25

°

C

39

68

IDD

Supply current (four amplifiers)

VO = 2.5 V,

No load

VIC = 2.5 V,

– 55

°

C

69

120

µ

A

No load

125

°

C

27

48

† Full range is  – 55

°

C to 125

°

C.

NOTES:

4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

5. This range also applies to each input individually.

background image

TLC27L4, TLC27L4A, TLC27L4B, TLC27L4Y, TLC27L9

LinCMOS

 PRECISION QUAD OPERATIONAL AMPLIFIERS

 

 

SLOS053C – OCTOBER 1987 – REVISED AUGUST 1994

11

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

electrical characteristics at specified free-air temperature, V

DD

 = 10 V (unless otherwise noted)

PARAMETER

TEST CONDITIONS

TA†

TLC27L4M

TLC27L9M

UNIT

A

MIN

TYP

MAX

TLC27L4M

VO = 1.4 V,

VIC = 0,

25

°

C

1.1

10

mV

VIO

Input offset voltage

TLC27L4M

O

,

RS = 50 

,

IC

,

RL = 1 M

Full range

12

mV

VIO

Input offset voltage

TLC27L9M

VO = 1.4 V,

VIC = 0,

25

°

C

210

1200

µ

V

TLC27L9M

O

,

RS = 50 

,

IC

,

RL = 1 M

Full range

4300

µ

V

α

VIO

Average temperature coefficient of

input offset voltage

25

°

C to 

125

°

C

1.4

µ

V/

°

C

IIO

Input offset current (see Note 4)

VO = 5 V

VIC = 5 V

25

°

C

0.1

pA

IIO

Input offset current (see Note 4)

VO = 5 V,

VIC = 5 V

125

°

C

1.8

15

nA

IIB

Input bias current (see Note 4)

VO = 5 V

VIC = 5 V

25

°

C

0.7

pA

IIB

Input bias current (see Note 4)

VO = 5 V,

VIC = 5 V

125

°

C

10

35

nA

VICR

Common-mode input voltage range 

25

°

C

0

to

9

– 0.3

to

9.2

V

VICR

g

g

(see Note 5)

Full range

0

to

8.5

V

25

°

C

8

8.9

VOH

High-level output voltage

VID = 100 mV,

RL = 1 M

– 55

°

C

7.8

8.8

V

125

°

C

7.8

9

25

°

C

0

50

VOL

Low-level output voltage

VID = –100 mV,

IOL = 0

– 55

°

C

0

50

mV

125

°

C

0

50

L

i

l diff

ti l

lt

25

°

C

50

800

AVD

Large-signal differential voltage

amplification

VO = 1 V to 6 V,

RL = 1 M

– 55

°

C

25

1750

V/mV

am lification

125

°

C

25

380

25

°

C

65

97

CMRR

Common-mode rejection ratio

VIC = VICRmin

– 55

°

C

60

97

dB

125

°

C

60

91

S

l

lt

j

ti

ti

25

°

C

70

97

kSVR

Supply-voltage rejection ratio

(

VDD /

VIO)

VDD = 5 V to 10 V, VO = 1.4 V

– 55

°

C

60

97

dB

(

VDD /

VIO)

125

°

C

60

98

V

5 V

V

5 V

25

°

C

57

92

IDD

Supply current (four amplifiers)

VO = 5 V,

No load

VIC = 5 V,

– 55

°

C

111

192

µ

A

No load

125

°

C

35

60

† Full range is  – 55

°

C to 125

°

C.

NOTES:

4. The typical values of input bias current and Input offset current below 5 pA were determined mathematically.

5. This range also applies to each input individually.

background image

TLC27L4, TLC27L4A, TLC27L4B, TLC27L4Y, TLC27L9

LinCMOS

 PRECISION QUAD OPERATIONAL AMPLIFIERS

 

 

SLOS053C – OCTOBER 1987 – REVISED AUGUST 1994

12

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

electrical characteristics at specified free-air temperature, V

DD

 = 5 V, T

A

 = 25

°

C (unless otherwise

noted)

PARAMETER

TEST CONDITIONS

TLC27L4Y

UNIT

PARAMETER

TEST CONDITIONS

MIN

TYP

MAX

UNIT

VIO

Input offset voltage

VO = 1.4 V,

RS = 50 

,

VIC = 0,

RL = 1 M

1.1

10

mV

α

VIO

Average temperature coefficient of input offset voltage

TA = 25

°

C to 70

°

C

1.1

µ

V/

°

C

IIO

Input offset current (see Note 4)

VO = 2.5 V,

VIC = 2.5 V

0.1

pA

IIB

Input bias current (see Note 4)

VO = 2.5 V,

VIC = 2.5 V

0.6

pA

VICR

Common-mode input voltage range (see Note 5)

– 0.2

to

4

– 0.3

to

4.2

V

VOH

High-level output voltage

VID = 100 mV,

RL = 1 M

3.2

4.1

V

VOL

Low-level output voltage

VID = –100 mV,

IOL = 0

0

50

mV

AVD

Large-signal differential voltage amplification

VO = 0.25 V to 2 V,

RL = 1 M

50

520

V/mV

CMRR

Common-mode rejection ratio

VIC = VICRmin

65

94

dB

kSVR

Supply-voltage rejection ratio (

VDD /

VIO)

VDD = 5 V to 10 V,

VO = 1.4 V

70

97

dB

IDD

Supply current (four amplifiers)

VO = 2.5 V,

No load

VIC = 2.5 V,

40

68

µ

A

electrical characteristics at specified free-air temperature, V

DD

 = 10 V, T

A

 = 25

°

C  (unless otherwise

noted)

PARAMETER

TEST CONDITIONS

TLC27L4Y

UNIT

PARAMETER

TEST CONDITIONS

MIN

TYP

MAX

UNIT

VIO

Input offset voltage

VO = 1.4 V,

RS = 50 

,

VIC = 0,

RL = 1 M

1.1

10

mV

α

VIO

Average temperature coefficient of input offset voltage

TA = 25

°

C to 70

°

C

1

µ

V/

°

C

IIO

Input offset current (see Note 4)

VO = 5 V,

VIC = 5 V

0.1

pA

IIB

Input bias current (see Note 4)

VO = 5 V,

VIC = 5 V

0.7

pA

VICR

Common-mode input voltage range (see Note 5)

– 0.2

to

9

– 0.3

to

9.2

V

VOH

High-level output voltage

VID = 100 mV,

RL = 1 M

8

8.9

V

VOL

Low-level output voltage

VID = –100 mV,

IOL = 0

0

50

mV

AVD

Large-signal differential voltage amplification

VO = 1 V to 6 V,

RL = 1 M

50

870

V/mV

CMRR

Common-mode rejection ratio

VIC = VICRmin

65

97

dB

kSVR

Supply-voltage rejection ratio (

VDD /

VIO)

VDD = 5 V to 10 V,

VO = 1.4 V

70

97

dB

IDD

Supply current (four amplifiers)

VO = 5 V,

No load

VIC = 5 V,

57

92

µ

A

NOTES:

4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

5. This range also applies to each input individually.

background image

TLC27L4, TLC27L4A, TLC27L4B, TLC27L4Y, TLC27L9

LinCMOS

 PRECISION QUAD OPERATIONAL AMPLIFIERS

 

 

SLOS053C – OCTOBER 1987 – REVISED AUGUST 1994

13

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

operating characteristics at specified free-air temperature, V

DD

 = 5 V

PARAMETER

TEST CONDITIONS

TA

TLC27L4C 

TLC27L4AC

TLC27L4BC

TLC27L9C

UNIT

MIN

TYP

MAX

25

°

C

0.03

VIPP = 1 V

0

°

C

0.04

SR

Slew rate at unity gain

RL = 1 M

,

CL 20 pF

70

°

C

0.03

V/

µ

s

SR

Slew rate at unity gain

CL = 20 pF,

See Figure 1

25

°

C

0.03

V/

µ

s

See Figure 1

VIPP =  2.5 V

0

°

C

0.03

70

°

C

0.02

Vn

Equivalent input noise voltage

f =  1  kHZ, 

See Figure 2

RS = 20 

Ω,

25

°

C

70

nV/

Hz

V

V

C

20 F

25

°

C

5

BOM

Maximum output-swing bandwidth

VO =  VOH,

RL = 1 M

CL = 20 pF,

See Figure 1

0

°

C

6

kHz

RL = 1 M

Ω,

See Figure 1

70

°

C

4.5

V

10

V

C

20 F

25

°

C

85

B1

Unity-gain bandwidth

VI = 10 mV,

See Figure 3

CL = 20 pF,

0

°

C

100

kHz

See Figure 3

70

°

C

65

V

10 mV

f

B

25

°

C

34

°

φ

m

Phase margin

VI =  10 mV,

CL = 20 pF,

f = B1,

See Figure 3

0

°

C

36

°

CL = 20  F,

See Figure 3

70

°

C

30

°

operating characteristics at specified free-air temperature, V

DD

 = 10 V

PARAMETER

TEST CONDITIONS

TA

TLC27L4C 

TLC27L4AC

TLC27L4BC

TLC27L9C

UNIT

MIN

TYP

MAX

25

°

C

0.05

VIPP = 1 V

0

°

C

0.05

SR

Slew rate at unity gain

RL = 1 M

,

CL 20 pF

70

°

C

0.04

V/

µ

s

SR

Slew rate at unity gain

CL = 20 pF,

See Figure 1

25

°

C

0.04

V/

µ

s

See Figure 1

VIPP =  5.5 V

0

°

C

0.05

70

°

C

0.04

Vn

Equivalent input noise voltage

f = 1  kHz, 

See Figure 2

RS = 20 

Ω,

25

°

C

70

nV/

Hz

V

V

C

20 F

25

°

C

1

BOM

Maximum output-swing bandwidth

VO =  VOH,

RL = 1 M

CL = 20 pF,

See Figure 1

0

°

C

1.3

kHz

RL = 1 M

Ω,

See Figure 1

70

°

C

0.9

V

10

V

C

20 F

25

°

C

110

B1

Unity-gain bandwidth

VI = 10 mV,

See Figure 3

CL = 20 pF,

0

°

C

125

kHz

See Figure 3

70

°

C

90

V

10 mV

f

B

25

°

C

38

°

φ

m

Phase margin

VI =  10 mV,

CL = 20 pF,

f = B1,

See Figure 3

0

°

C

40

°

CL = 20  F,

See Figure 3

70

°

C

34

°

background image

TLC27L4, TLC27L4A, TLC27L4B, TLC27L4Y, TLC27L9

LinCMOS

 PRECISION QUAD OPERATIONAL AMPLIFIERS

 

 

SLOS053C – OCTOBER 1987 – REVISED AUGUST 1994

14

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

operating characteristics at specified free-air temperature, V

DD

 = 5 V

PARAMETER

TEST CONDITIONS

TA

TLC27L4I 

TLC27L4AI

TLC27L4BI

TLC27L9I

UNIT

MIN

TYP

MAX

25

°

C

0.03

VIPP = 1 V

– 40

°

C

0.04

SR

Slew rate at unity gain

RL = 1 M

,

CL 20 pF

85

°

C

0.03

V/

µ

s

SR

Slew rate at unity gain

CL = 20 pF,

See Figure 1

25

°

C

0.03

V/

µ

s

See Figure 1

VIPP =  2.5 V

– 40

°

C

0.04

85

°

C

0.02

Vn

Equivalent input noise voltage

f = 1 HZ, 

See Figure 2

RS = 20 

Ω,

25

°

C

70

nV/

Hz

V

V

C

20 F

25

°

C

5

BOM

Maximum output-swing bandwidth

VO =  VOH,

RL = 1 M

CL = 20 pF,

See Figure 1

– 40

°

C

7

kHz

RL = 1 M

Ω,

See Figure 1

85

°

C

4

V

10

V

C

20 F

25

°

C

85

B1

Unity-gain bandwidth

VI = 10 mV,

See Figure 3

CL = 20 pF,

– 40

°

C

130

kHz

See Figure 3

85

°

C

55

V

10 mV

f

B

25

°

C

34

°

φ

m

Phase margin

VI =  10 mV,

CL = 20 pF,

f = B1,

See Figure 3

– 40

°

C

38

°

CL = 20  F,

See Figure 3

85

°

C

28

°

operating characteristics at specified free-air temperature, V

DD

 = 10 V

PARAMETER

TEST CONDITIONS

TA

TLC27L4I

TLC27L4AI

TLC27L4BI

TLC27L9I

UNIT

MIN

TYP

MAX

25

°

C

0.05

VIPP = 1 V

– 40

°

C

0.06

SR

Slew rate at unity gain

RL = 1 M

,

CL 20 pF

85

°

C

0.03

V/

µ

s

SR

Slew rate at unity gain

CL = 20 pF,

See Figure 1

25

°

C

0.04

V/

µ

s

See Figure 1

VIPP =  2.5 V

– 40

°

C

0.05

85

°

C

0.03

Vn

Equivalent input noise voltage

f = 1 HZ, 

See Figure 2

RS = 20 

Ω,

25

°

C

70

nV/

Hz

V

V

C

20 F

25

°

C

1

BOM

Maximum output-swing bandwidth

VO =  VOH,

RL = 1 M

CL = 20 pF,

See Figure 1

– 40

°

C

1.4

kHz

RL = 1 M

Ω,

See Figure 1

85

°

C

0.8

V

10

V

C

20 F

25

°

C

110

B1

Unity-gain bandwidth

VI = 10 mV,

See Figure 3

CL = 20 pF,

– 40

°

C

155

kHz

See Figure 3

85

°

C

80

V

10 mV

f

B

25

°

C

38

°

φ

m

Phase margin

VI =  10 mV,

CL = 20 pF,

f = B1,

See Figure 3

– 40

°

C

42

°

CL = 20  F,

See Figure 3

85

°

C

32

°

background image

TLC27L4, TLC27L4A, TLC27L4B, TLC27L4Y, TLC27L9

LinCMOS

 PRECISION QUAD OPERATIONAL AMPLIFIERS

 

 

SLOS053C – OCTOBER 1987 – REVISED AUGUST 1994

15

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

operating characteristics at specified free-air temperature, V

DD

 = 5 V

PARAMETER

TEST CONDITIONS

TA

TLC27L4M

TLC27L9M

UNIT

A

MIN

TYP

MAX

25

°

C

0.03

VIPP = 1 V

– 55

°

C

0.04

SR

Slew rate at unity gain

RL = 1 M

,

CL 20 pF

125

°

C

0.02

V/

µ

s

SR

Slew rate at unity gain

CL = 20 pF,

See Figure 1

25

°

C

0.03

V/

µ

s

See Figure 1

VIPP =  2.5 V

– 55

°

C

0.04

125

°

C

0.02

Vn

Equivalent input noise voltage

f = 1  kHz,

See Figure 2

RS = 20 

Ω,

25

°

C

70

nV/

Hz

V

V

C

20 F

25

°

C

5

BOM

Maximum output-swing bandwidth

VO =  VOH,

RL = 1 M

CL = 20 pF,

See Figure 1

– 55

°

C

8

kHz

RL = 1 M

Ω,

See Figure 1

125

°

C

3

V

10

V

C

20 F

25

°

C

85

B1

Unity-gain bandwidth

VI = 10  mV, 

See Figure 3

CL = 20 pF,

– 55

°

C

140

kHz

See Figure 3

125

°

C

45

V

10 mV

f

B

25

°

C

34

°

φ

m

Phase margin

VI =  10  mV,

CL = 20 pF,

f = B1,

See Figure 3

– 55

°

C

39

°

CL = 20  F,

See Figure 3

125

°

C

25

°

operating characteristics at specified free-air temperature, V

DD

 = 10 V

PARAMETER

TEST CONDITIONS

TA

TLC27L4M

TLC27L9M

UNIT

A

MIN

TYP

MAX

25

°

C

0.05

VIPP = 1 V

– 55

°

C

0.06

SR

Slew rate at unity gain

RL = 1 M

,

CL 20 pF

125

°

C

0.03

V/

µ

s

SR

Slew rate at unity gain

CL = 20 pF,

See Figure 1

25

°

C

0.04

V/

µ

s

See Figure 1

VIPP =  5.5 V

– 55

°

C

0.06

125

°

C

0.03

Vn

Equivalent input noise voltage

f = 1  kHz,

See Figure 2

RS = 20 

Ω,

25

°

C

70

nV/

Hz

V

V

C

20 F

25

°

C

1

BOM

Maximum output-swing bandwidth

VO =  VOH,

RL = 1 M

CL = 20 pF,

See Figure 1

– 55

°

C

1.5

kHz

RL = 1 M

Ω,

See Figure 1

125

°

C

0.7

V

10

V

C

20 F

25

°

C

110

B1

Unity-gain bandwidth

VI = 10  mV, 

See Figure 3

CL = 20 pF,

– 55

°

C

165

kHz

See Figure 3

125

°

C

70

V

10 mV

f

B

25

°

C

38

°

φ

m

Phase margin

VI =  10  mV,

CL = 20 PF,

f = B1,

See Figure 3

– 55

°

C

43

°

CL = 20 PF,

See Figure 3

125

°

C

29

°

background image

TLC27L4, TLC27L4A, TLC27L4B, TLC27L4Y, TLC27L9

LinCMOS

 PRECISION QUAD OPERATIONAL AMPLIFIERS

 

 

SLOS053C – OCTOBER 1987 – REVISED AUGUST 1994

16

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

operating characteristics, V

DD

 = 5 V, T

A

 = 25

°

C

PARAMETER

TEST CONDITIONS

TLC27L4Y

UNIT

PARAMETER

TEST CONDITIONS

MIN

TYP

MAX

UNIT

SR

Slew rate at unity gain

RL = 1 M

,

CL = 20 pF

VIPP = 1 V

0.03

V/

µ

s

SR

Slew rate at unity gain

CL = 20 pF,

See Figure 1

VIPP =  2.5 V

0.03

V/

µ

s

Vn

Equivalent input noise voltage

f =  1  kHz,

See Figure 2

RS = 20 

Ω,

70

nV/

Hz

BOM

Maximum output-swing bandwidth

VO =  VOH,

RL = 1 M

Ω,

CL = 20 pF,

See Figure 1

5

kHz

B1

Unity-gain bandwidth

VI = 10  mV, 

See Figure 3

CL = 20 pF,

85

kHz

φ

m

Phase margin

VI =  10 mV,

CL = 20 pF,

f = B1,

See Figure 3

34

°

operating characteristics, V

DD 

= 10 V, T

A

 = 25

°

C

PARAMETER

TEST CONDITIONS

TLC27L4Y

UNIT

PARAMETER

TEST CONDITIONS

MIN

TYP

MAX

UNIT

SR

Slew rate at unity gain

RL = 1 M

,

CL = 20 pF

VIPP = 1 V

0.05

V/

µ

s

SR

Slew rate at unity gain

CL = 20 pF,

See Figure 1

VIPP =  5.5 V

0.04

V/

µ

s

Vn

Equivalent input noise voltage

f =  1  kHz,

See Figure 2

RS = 20 

Ω,

70

nV/

Hz

BOM

Maximum output-swing bandwidth

VO =  VOH,

RL = 1 M

Ω,

CL = 20 pF,

See Figure 1

1

kHz

B1

Unity-gain bandwidth

VI = 10  mV,

See Figure 3

CL = 20 pF,

110

kHz

φ

m

Phase margin

VI =  10 mV,

CL = 20 pF,

f = B1,

See Figure 3

38

°

background image

TLC27L4, TLC27L4A, TLC27L4B, TLC27L4Y, TLC27L9

LinCMOS

 PRECISION QUAD OPERATIONAL AMPLIFIERS

 

 

SLOS053C – OCTOBER 1987 – REVISED AUGUST 1994

17

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

PARAMETER MEASUREMENT INFORMATION

single-supply versus split-supply test circuits

Because the TLC27L4 and TLC27L9 are optimized for single-supply operation, circuit configurations used for

the various tests often present some inconvenience since the input signal, in many cases, must be offset from

ground. This inconvenience can be avoided by testing the device with split supplies and the output load tied to

the negative rail. A comparison of single-supply versus split-supply test circuits is shown below. The use of either

circuit gives the same result.

+

VDD

CL

RL

VO

VI

VI

VO

RL

CL

+

VDD +

VDD –

(a) SINGLE SUPPLY

(b) SPLIT SUPPLY

Figure 1. Unity-Gain Amplifier

VDD

+

VDD +

+

1/2 VDD

20 

VO

2 k

20 

VDD –

20 

20 

2 k

VO

(b) SPLIT SUPPLY

(a) SINGLE SUPPLY

Figure 2. Noise-Test Circuit

VDD

+

10 k

VO

100 

CL

1/2 VDD

VI

VI

CL

100 

VO

10 k

+

VDD +

VDD –

(b) SPLIT SUPPLY

(a) SINGLE SUPPLY

Figure 3. Gain-of-100 Inverting Amplifier

background image

TLC27L4, TLC27L4A, TLC27L4B, TLC27L4Y, TLC27L9

LinCMOS

 PRECISION QUAD OPERATIONAL AMPLIFIERS

 

 

SLOS053C – OCTOBER 1987 – REVISED AUGUST 1994

18

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

PARAMETER MEASUREMENT INFORMATION

input bias current

Because of the high input impedance of the TLC27L4 and TLC27L9 operational amplifiers, attempts to measure

the input bias current can result in erroneous readings. The bias current at normal room ambient temperature

is typically less than 1 pA, a value that is easily exceeded by leakages on the test socket. Two suggestions are

offered to avoid erroneous measurements:

1.

Isolate the device from other potential leakage sources. Use a grounded shield around and between the

device inputs (see Figure 4). Leakages that would otherwise flow to the inputs are shunted away.

2.

Compensate for the leakage of the test socket by actually performing an input bias current test (using

a picoammeter) with no device in the test socket. The actual input bias current can then be calculated

by subtracting the open-socket leakage readings from the readings obtained with a device in the test

socket.

One word of caution: many automatic testers as well as some bench-top operational amplifier testers use the

servo-loop technique with a resistor in series with the device input to measure the input bias current (the voltage

drop across the series resistor is measured and the bias current is calculated). This method requires that a

device be inserted into the test socket to obtain a correct reading; therefore, an open-socket reading is not

feasible using this method.

V = VIC

14

8

1

7

Figure 4. Isolation Metal Around Device Inputs (J and N packages)

low-level output voltage

To obtain low-supply-voltage operation, some compromise was necessary in the input stage. This compromise

results in the device low-level output being dependent on both the common-mode input voltage level as well

as the differential input voltage level. When attempting to correlate low-level output readings with those quoted

in the electrical specifications, these two conditions should be observed. If conditions other than these are to

be used, please refer to Figures 14 through 19 in the Typical Characteristics of this data sheet.

input offset voltage temperature coefficient

Erroneous readings often result from attempts to measure temperature coefficient of input offset voltage. This

parameter is actually a calculation using input offset voltage measurements obtained at two different

temperatures. When one (or both) of the temperatures is below freezing, moisture can collect on both the device

and the test socket. This moisture results in leakage and contact resistance, which can cause erroneous input

offset voltage readings. The isolation techniques previously mentioned have no effect on the leakage since the

moisture also covers the isolation metal itself, thereby rendering it useless. It is suggested that these

measurements be performed at temperatures above freezing to minimize error.

background image

TLC27L4, TLC27L4A, TLC27L4B, TLC27L4Y, TLC27L9

LinCMOS

 PRECISION QUAD OPERATIONAL AMPLIFIERS

 

 

SLOS053C – OCTOBER 1987 – REVISED AUGUST 1994

19

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

PARAMETER MEASUREMENT INFORMATION

full-power response

Full-power response, the frequency above which the operational amplifier slew rate limits the output voltage

swing, is often specified two ways: full-linear response and full-peak response. The full-linear response is

generally measured by monitoring the distortion level of the output while increasing the frequency of a sinusoidal

input signal until the maximum frequency is found above which the output contains significant distortion. The

full-peak response is defined as the maximum output frequency, without regard to distortion, above which full

peak-to-peak output swing cannot be maintained.

Because there is no industry-wide accepted value for significant distortion, the full-peak response is specified

in this data sheet and is measured using the circuit of Figure 1. The initial setup involves the use of a sinusoidal

input to determine the maximum peak-to-peak output of the device (the amplitude of the sinusoidal wave is

increased until clipping occurs). The sinusoidal wave is then replaced with a square wave of the same

amplitude. The frequency is then increased until the maximum peak-to-peak output can no longer be maintained

(Figure 5). A square wave is used to allow a more accurate determination of the point at which the maximum

peak-to-peak output is reached.

(a) f = 100 Hz

(b) BOM > f > 100 Hz

(c) f = BOM

(d) f > BOM

Figure 5. Full-Power-Response Output Signal

test time

Inadequate test time is a frequent problem, especially when testing CMOS devices in a high-volume,

short-test-time environment. Internal capacitances are inherently higher in CMOS than in bipolar and BiFET

devices and require longer test times than their bipolar and BiFET counterparts. The problem becomes more

pronounced with reduced supply levels and lower temperatures.

background image

TLC27L4, TLC27L4A, TLC27L4B, TLC27L4Y, TLC27L9

LinCMOS

 PRECISION QUAD OPERATIONAL AMPLIFIERS

 

 

SLOS053C – OCTOBER 1987 – REVISED AUGUST 1994

20

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Table of Graphs

FIGURE

VIO

Input offset voltage

Distribution

6, 7

α

VIO

Temperature coefficient

Distribution

8, 9

vs High-level output current

10, 11

VOH

High-level output voltage

g

vs Supply voltage

,

12

OH

g

g

g

vs Free-air temperature

13

vs Common-mode input voltage

14, 15

VOL

Low level output voltage

vs Common mode in ut voltage

vs Differential input voltage

14, 15

16

VOL

Low-level output voltage

g

vs Free-air temperature

17

vs Low-level output current

18, 19

vs Supply voltage

20

AVD

Differential voltage amplification

y

g

vs Free-air temperature

21

VD

g

vs Frequency

32, 33

IIB / IIO

Input bias and input offset current

vs Free-air temperature

22

VIC

Common-mode input voltage

vs Supply voltage

23

IDD

Supply current

vs Supply voltage

24

IDD

Supply current

y

g

vs Free-air temperature

25

SR

Slew rate

vs Supply voltage

26

SR

Slew rate

y

g

vs Free-air temperature

27

Normalized slew rate

vs Free-air temperature

28

VO(PP)

Maximum peak-to-peak output voltage

vs Frequency

29

B1

Unity gain bandwidth

vs Free-air temperature

30

B1

Unity-gain bandwidth

vs Supply voltage

31

φ

vs Supply voltage

34

φ

m

Phase margin

y

g

vs Free-air temperature

35

m

g

vs Capacitive loads

36

Vn

Equivalent input noise voltage

vs Frequency

37

φ

Phase shift

vs Frequency

32, 33

background image

TLC27L4, TLC27L4A, TLC27L4B, TLC27L4Y, TLC27L9

LinCMOS

 PRECISION QUAD OPERATIONAL AMPLIFIERS

 

 

SLOS053C – OCTOBER 1987 – REVISED AUGUST 1994

21

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 6

– 5

0

Percentage of Units – %

VIO – Input Offset Voltage – mV

5

70

– 4

– 3

– 2

– 1

0

1

2

3

4

10

20

30

40

50

60

905 Amplifiers Tested From 6 Wafer Lots

VDD = 5 V

TA = 25

°

C

N Package

DISTRIBUTION OF TLC27L4

INPUT OFFSET VOLTAGE

Figure 7

N Package

TA = 25

°

C

VDD = 10 V

905 Amplifiers Tested From 6 Wafer Lots

60

50

40

30

20

10

4

3

2

1

0

– 1

– 2

– 3

– 4

70

5

VIO – Input Offset Voltage – mV

Percentage of Units – %

0

– 5

DISTRIBUTION OF TLC27L4

INPUT OFFSET VOLTAGE

Figure 8

(1) 12.1 

µ

V/

°

C

(1) 19.2 

µ

V/

°

C

Outliers:

N Package

TA = 25

°

C to 125

°

C

VDD = 5 V

356 Amplifiers Tested From 8 Wafer Lots

60

50

40

30

20

10

8

6

4

2

0

– 2

– 4

– 6

– 8

70

10

α

VIO – Temperature Coefficient – 

µ

V/

°

C

Percentage of Units – %

0

– 10

DISTRIBUTION OF TLC27L4 AND TLC27L9

INPUT OFFSET VOLTAGE

TEMPERATURE COEFFICIENT

Figure 9

– 10

0

Percentage of Units – %

α

VIO – Temperature Coefficient – 

µ

V/

°

C

10

70

– 8

– 6

– 4

– 2

0

2

4

6

8

10

20

30

40

50

60

356 Amplifiers Tested From 6 Wafer Lots

VDD = 10 V

TA = 25

°

C to 125

°

C

N Package

Outliers:

(1) 18.7 

µ

V/

°

C

(1) 11.6 

µ

V/

°

C

DISTRIBUTION OF TLC27L4 AND TLC27L9

INPUT OFFSET VOLTAGE

TEMPERATURE COEFFICIENT

background image

TLC27L4, TLC27L4A, TLC27L4B, TLC27L4Y, TLC27L9

LinCMOS

 PRECISION QUAD OPERATIONAL AMPLIFIERS

 

 

SLOS053C – OCTOBER 1987 – REVISED AUGUST 1994

22

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 10

0

0

IOH – High-Level Output Current – mA

– 10

5

– 2

– 4

– 6

– 8

1

2

3

4

VID = 100 mV

TA = 25

°

C

VDD = 5 V

VDD = 3 V

VDD = 4 V

HIGH-LEVEL OUTPUT VOLTAGE

vs

HIGH-LEVEL OUTPUT CURRENT

– High-Level Output V

oltage – V

V

OH

Figure 11

0

0

IOH – High-Level Output Current – mA

– 40

16

– 10

– 20

– 30

2

4

6

8

10

12

14

TA = 25

°

C

VID = 100 mV

VDD = 16 V

VDD = 10 V

HIGH-LEVEL OUTPUT VOLTAGE

vs

HIGH-LEVEL OUTPUT CURRENT

– High-Level Output V

oltage – V

V

OH

– 35

– 5

– 15

– 25

Figure 12

0

VDD – Supply Voltage – V

16

2

4

6

8

10

12

14

14

12

10

8

6

4

2

16

0

VID = 100 mV

RL = 1 M

TA = 25

°

C

HIGH-LEVEL OUTPUT VOLTAGE

vs

SUPPLY VOLTAGE

– High-Level Output V

oltage – V

V

OH

Figure 13

VDD – 1.7

VDD – 1.8

VDD – 1.9

VDD  – 2

VDD – 2.1

VDD – 2.2

VDD – 2.3

100

75

50

25

0

– 25

– 50

VDD – 1.6

125

TA – Free-Air Temperature – 

°

C

VDD – 2.4

– 75

IOH = – 5 mA

VID = 100 mV

VDD = 5 V

VDD = 10 V

HIGH-LEVEL OUTPUT VOLTAGE

vs

FREE-AIR TEMPERATURE

– High-Level Output V

oltage – V

V

OH

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

background image

TLC27L4, TLC27L4A, TLC27L4B, TLC27L4Y, TLC27L9

LinCMOS

 PRECISION QUAD OPERATIONAL AMPLIFIERS

 

 

SLOS053C – OCTOBER 1987 – REVISED AUGUST 1994

23

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 14

0

300

– Low-Level Output V

oltage – mV

VIC – Common-Mode Input Voltage – V

4

700

1

2

3

400

500

600

TA = 25

°

C

IOL = 5 mA

VDD = 5 V

VID = – 100 mV

VID = – 1 V

LOW-LEVEL OUTPUT VOLTAGE

vs

COMMON-MODE INPUT VOLTAGE

V

OL

350

450

550

650

0.5

1.5

2.5

3.5

Figure 15

250

0

VIC – Common-Mode Input Voltage – V

300

350

400

450

500

2

4

6

8

10

VDD = 10 V

IOL = 5 mA

TA = 25

°

C

VID = – 1 V

VID = – 2.5 V

VID = – 100 mV

LOW-LEVEL OUTPUT VOLTAGE

vs

COMMON-MODE INPUT VOLTAGE

– Low-Level Output V

oltage – mV

V

OL

7

1

3

5

9

Figure 16

LOW-LEVEL OUTPUT VOLTAGE

vs

DIFFERENTIAL INPUT VOLTAGE

0

VID – Differential Input Voltage – V

– 10

– 2

– 4

– 6

– 8

800

700

600

500

400

300

200

100

0

IOL = 5 mA

VIC = | VID/2 |

TA = 25

°

C

VDD = 5 V

VDD = 10 V

– Low-Level Output V

oltage – mV

V

OL

Figure 17

LOW-LEVEL OUTPUT VOLTAGE

vs

FREE-AIR TEMPERATURE

– 75

0

125

900

– 50

– 25

0

25

50

75

100

100

200

300

400

500

600

700

800

VIC = 0.5 V

VID = – 1 V

IOL = 5 mA

VDD = 5 V

VDD = 10 V

TA – Free-Air Temperature – 

°

C

– Low-Level Output V

oltage – mV

V

OL

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

background image

TLC27L4, TLC27L4A, TLC27L4B, TLC27L4Y, TLC27L9

LinCMOS

 PRECISION QUAD OPERATIONAL AMPLIFIERS

 

 

SLOS053C – OCTOBER 1987 – REVISED AUGUST 1994

24

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 18

0

IOL – Low-Level Output Current – mA

1

8

0

1

2

3

4

5

6

7

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

VID = – 1 V

VIC = 0.5 V

TA = 25

°

C

VDD = 3 V

VDD = 4 V

VDD = 5 V

LOW-LEVEL OUTPUT VOLTAGE

vs

LOW-LEVEL OUTPUT CURRENT

– Low-Level Output V

oltage – V

V

OL

Figure 19

0

IOL – Low-Level Output Current – mA

3

30

0

5

10

15

20

25

0.5

1

1.5

2

2.5

TA = 25

°

C

VIC = 0.5 V

VID = – 1 V

VDD = 10 V

VDD = 16 V

LOW-LEVEL OUTPUT VOLTAGE

vs

LOW-LEVEL OUTPUT CURRENT

– Low-Level Output V

oltage – V

V

OL

Figure 20

0

VDD – Supply Voltage – V

2000

0

2

4

6

8

10

12

14

200

400

600

800

1000

1200

1400

1600

1800

RL = 1 M

TA = – 55

°

C

TA = – 40

°

C

TA = 0

°

C

TA = 25

°

C

TA = 70

°

C

TA = 85

°

C

TA = 125

°

C

LARGE-SIGNAL

DIFFERENTIAL VOLTAGE AMPLIFICATION

vs

SUPPLY VOLTAGE

A

VD – Large-Signal Differential

ÁÁ

ÁÁ

A

VD

V

oltage 

Amplification – V/mV

16

Figure 21

100

75

50

25

0

– 25

– 50

0

125

TA – Free-Air Temperature – 

°

C

– 75

RL = 1 M

VDD = 5 V

VDD = 10 V

1800

1600

1400

1200

1000

800

600

400

200

2000

LARGE-SIGNAL

DIFFERENTIAL VOLTAGE AMPLIFICATION

vs

FREE-AIR TEMPERATURE

A

VD – Large-Signal Differential

ÁÁ

ÁÁ

ÁÁ

A

VD

V

oltage 

Amplification – V/mV

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

background image

TLC27L4, TLC27L4A, TLC27L4B, TLC27L4Y, TLC27L9

LinCMOS

 PRECISION QUAD OPERATIONAL AMPLIFIERS

 

 

SLOS053C – OCTOBER 1987 – REVISED AUGUST 1994

25

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 22

0.1

125

10000

45

65

85

105

1

10

100

1000

25

TA – Free-Air Temperature – 

°

C

VDD = 10 V

VIC = 5 V

See Note A

IIB

IIO

INPUT BIAS CURRENT AND INPUT OFFSET CURRENT

vs

FREE-AIR TEMPERATURE

– Input Bias and Offset Currents – pA

I IB

I IO

and

NOTE A: The typical values of input bias current and input offset

current below 5 pA were determined mathematically.

Figure 23

0

VDD – Supply Voltage – V

16

16

0

2

4

6

8

10

12

14

2

4

6

8

10

12

14

TA = 25

°

C

COMMON-MODE

INPUT VOLTAGE POSITIVE LIMIT

vs

SUPPLY VOLTAGE

IC

V

 Common-Mode Input V

oltage – V

Figure 24

No Load

VO = VDD/2

0

VDD – Supply Voltage – V

180

16

0

2

4

6

8

10

12

14

20

40

60

80

100

120

140

160

ÌÌÌÌ

ÌÌÌÌ

TA = – 40

°

C

SUPPLY CURRENT

vs

SUPPLY VOLTAGE

– Supply Current – 

I DD

A

µ

ÌÌÌÌ

ÌÌÌÌ

ÌÌÌÌ

ÌÌÌÌ

TA = 0

°

C

TA = 25

°

C

TA = 70

°

C

TA = 125

°

C

ÌÌÌÌ

ÌÌÌÌ

TA = – 55

°

C

Figure 25

VO = VDD/2

No Load

VDD = 10 V

VDD = 5 V

– 75

TA – Free-Air Temperature – 

°

C

120

125

0

– 50

– 25

0

25

50

75

100

20

40

60

80

100

SUPPLY CURRENT

vs

FREE-AIR TEMPERATURE

– Supply Current – 

I DD

A

µ

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

background image

TLC27L4, TLC27L4A, TLC27L4B, TLC27L4Y, TLC27L9

LinCMOS

 PRECISION QUAD OPERATIONAL AMPLIFIERS

 

 

SLOS053C – OCTOBER 1987 – REVISED AUGUST 1994

26

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 26

CL = 20 pF

RL = 1 m

VIPP = 1 V

AV = 1

See Figure 1

TA = 25

°

C

0

VDD – Supply Voltage – V

0.07

16

0.00

2

4

6

8

10

12

14

0.01

0.02

0.03

0.04

0.05

0.06

SLEW RATE

vs

SUPPLY VOLTAGE

µ

s

SR – Slew Rate – V/

Figure 27

VIPP = 5.5 V

VDD = 10 V

VDD = 5 V

VIPP = 1 V

VDD = 5 V

VIPP = 2.5 V

VDD = 10 V

VIPP = 1 V

– 75

TA – Free-Air Temperature – 

°

C

0.07

125

0.00

– 50

– 25

0

25

50

75

100

0.01

0.02

0.03

0.04

0.05

0.06

CL = 20 pF

RL = 1 M

See Figure 1

AV = 1

SLEW RATE

vs

FREE-AIR TEMPERATURE

µ

s

SR – Slew Rate – V/

Figure 28

– 75

Normalized Slew Rate

TA – Free-Air Temperature – 

°

C

1.4

125

0.5

– 50

– 25

0

25

50

75

100

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

AV = 1

VIPP = 1 V

RL = 1 M

CL = 20 pF

VDD = 10 V

VDD = 5 V

NORMALIZED SLEW RATE

vs

FREE-AIR TEMPERATURE

Figure 29

0.1

f – Frequency – kHz

10

100

0

1

2

3

4

5

6

7

8

9

1

10

VDD = 10 V

VDD = 5 V

See Figure 1

RL = 1 M

TA = 125

°

C

TA = 25

°

C

TA = – 55

°

C

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE

vs

FREQUENCY

– Maximum Peak-to-Peak Output V

oltage – V

V

O(PP)

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

background image

TLC27L4, TLC27L4A, TLC27L4B, TLC27L4Y, TLC27L9

LinCMOS

 PRECISION QUAD OPERATIONAL AMPLIFIERS

 

 

SLOS053C – OCTOBER 1987 – REVISED AUGUST 1994

27

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 30

VDD = 5 V

VI = 10 mV

CL = 20 pF

See Figure 3

– 75

TA – Free-Air Temperature – 

°

C

150

125

30

– 50

– 25

0

25

50

75

100

50

70

90

110

130

UNITY-GAIN BANDWIDTH

vs

FREE-AIR TEMPERATURE

– Unity-Gain Bandwidth – kHz

B

1

Figure 31

0

VDD – Supply Voltage – V

140

16

50

2

4

6

8

10

12

14

60

70

80

90

100

110

120

130

See Figure 3

TA = 25

°

C

CL = 20 pF

VI = 10 mV

UNITY-GAIN BANDWIDTH

vs

SUPPLY VOLTAGE

– Unity-Gain Bandwidth – kHz

B

1

1

f – Frequency – Hz

1 M

0.1

10

100

1 k

10 k

100 k

1

101

102

103

104

105

106

150

°

120

°

90

°

60

°

30

°

0

°

180

°

TA = 25

°

C

RL = 1 M

VDD = 5 V

AVD

Phase Shift

107

LARGE-SIGNAL DIFFERENTIAL VOLTAGE

AMPLIFICATION AND PHASE SHIFT

vs

FREQUENCY

Phase Shift

A

VD – Large-Signal Differential

ÁÁ

ÁÁ

ÁÁ

A

VD

V

oltage Amplification

Figure 32

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

background image

TLC27L4, TLC27L4A, TLC27L4B, TLC27L4Y, TLC27L9

LinCMOS

 PRECISION QUAD OPERATIONAL AMPLIFIERS

 

 

SLOS053C – OCTOBER 1987 – REVISED AUGUST 1994

28

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Phase Shift

AVD

VDD = 10 V

RL = 1 M

TA = 25

°

C

180

°

0

°

30

°

60

°

90

°

120

°

150

°

10 6

10 5

10 4

10 3

10 2

10 1

1

100 k

10 k

1 k

100

10

0.1

1 M

f – Frequency – Hz

1

10 7

LARGE-SIGNAL DIFFERENTIAL VOLTAGE

AMPLIFICATION AND PHASE SHIFT

vs

FREQUENCY

Phase Shift

A

VD – Large-Signal Differential

Á

Á

Á

A

VD

V

oltage Amplification

Figure 33

Figure 34

0

VDD – Supply Voltage – V

42

°

16

30

°

2

4

6

8

10

12

14

32

°

34

°

36

°

38

°

40

°

See Figure 3

VI = 10 mV

TA = 25

°

C

CL = 20 pF

PHASE MARGIN

vs

SUPPLY VOLTAGE

– Phase Margin

φ

m

Figure 35

See Figure 3

VI = 10 mV

CL = 20 pF

VDD = 5 mV

– 75

TA – Free-Air Temperature – 

°

C

40

°

125

20

°

– 50

– 25

0

25

50

75

100

24

°

28

°

32

°

36

°

PHASE MARGIN

vs

FREE-AIR TEMPERATURE

– Phase Margin

φ

m

30

°

34

°

38

°

26

°

22

°

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

background image

TLC27L4, TLC27L4A, TLC27L4B, TLC27L4Y, TLC27L9

LinCMOS

 PRECISION QUAD OPERATIONAL AMPLIFIERS

 

 

SLOS053C – OCTOBER 1987 – REVISED AUGUST 1994

29

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 36

VDD = 5 mV

TA = 25

°

C

See Figure 3

VI = 10 mV

0

CL – Capacitive Load – pF

37

°

100

25

°

20

40

60

80

27

°

29

°

31

°

33

°

35

°

PHASE MARGIN

vs

CAPACITIVE LOAD

– Phase Margin

φ

m

Figure 37

See Figure 2

TA = 25

°

C

RS = 20 

VDD = 5 V

1

f – Frequency – Hz

200

1000

0

25

50

75

100

125

150

175

10

100

EQUIVALENT INPUT NOISE VOLTAGE

vs

FREQUENCY

– Equivalent Input Noise V

oltage –

nV/

Hz

V

n

background image

TLC27L4, TLC27L4A, TLC27L4B, TLC27L4Y, TLC27L9

LinCMOS

 PRECISION QUAD OPERATIONAL AMPLIFIERS

 

 

SLOS053C – OCTOBER 1987 – REVISED AUGUST 1994

30

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

APPLICATION INFORMATION

single-supply operation

While the TLC27L4 and TLC27L9 perform well using dual power supplies (also called balanced or split

supplies), the design is optimized for single-supply operation. This design includes an input common-mode

voltage range that encompasses ground as well as an output voltage range that pulls down to ground. The

supply voltage range extends down to 3 V (C-suffix types), thus allowing operation with supply levels commonly

available for TTL and HCMOS; however, for maximum dynamic range, 16-V single-supply operation is

recommended.

Many single-supply applications require that a voltage be applied to one input to establish a reference level that

is above ground. A resistive voltage divider is usually sufficient to establish this reference level (see Figure 38).

The low input bias current of the TLC27L4 and TLC27L9 permits the use of very large resistive values to

implement the voltage divider, thus minimizing power consumption.

The TLC27L4 and TLC27L9 work well in conjunction with digital logic; however, when powering both linear

devices and digital logic from the same power supply, the following precautions are recommended:

1.

Power the linear devices from separate bypassed supply lines (see Figure 39); otherwise, the linear

device supply rails can fluctuate due to voltage drops caused by high switching currents in the digital

logic.

2.

Use proper bypass techniques to reduce the probability of noise-induced errors. Single capacitive

decoupling is often adequate; however, high-frequency applications may require RC decoupling.

R4

VO

VDD

R2

R1

VI

VREF

R3

C

0.01 

µ

F

+

VREF = VDD

R3

R1 + R3

VO = (VREF – VI )

R4

R2

+ VREF

Figure 38. Inverting Amplifier With Voltage Reference

background image

TLC27L4, TLC27L4A, TLC27L4B, TLC27L4Y, TLC27L9

LinCMOS

 PRECISION QUAD OPERATIONAL AMPLIFIERS

 

 

SLOS053C – OCTOBER 1987 – REVISED AUGUST 1994

31

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

APPLICATION INFORMATION

single-supply operation (continued)

Logic

Logic

Logic

+

+

(a) COMMON SUPPLY RAILS

(b) SEPARATE BYPASSED SUPPLY RAILS (preferred)

Logic

Logic

Logic

Power

Supply

Power

Supply

Output

Output

Figure 39. Common Versus Separate Supply Rails

input characteristics

The TLC27L4 and TLC27L9 are specified with a minimum and a maximum input voltage that, if exceeded at

either input, could cause the device to malfunction. Exceeding this specified range is a common problem,

especially in single-supply operation. Note that the lower range limit includes the negative rail, while the upper

range limit is specified at V

DD

 – 1 V at T

A

 = 25

°

C and at V

DD

 – 1.5 V at all other temperatures.

The use of the polysilicon-gate process and the careful input circuit design gives the TLC27L4 and TLC27L9

very good input offset voltage drift characteristics relative to conventional metal-gate processes. Offset voltage

drift in CMOS devices is highly influenced by threshold voltage shifts caused by polarization of the phosphorus

dopant implanted in the oxide. Placing the phosphorus dopant in a conductor (such as a polysilicon gate)

alleviates the polarization problem, thus reducing threshold voltage shifts by more than an order of magnitude.

The offset voltage drift with time has been calculated to be typically 0.1 

µ

V/month, including the first month of

operation.

Because of the extremely high input impedance and resulting low bias current requirements, the TLC27L4 and

TLC27L9 are well suited for low-level signal processing; however, leakage currents on printed circuit boards

and sockets can easily exceed bias current requirements and cause a degradation in device performance. It

is good practice to include guard rings around inputs (similar to those of Figure 4 in the Parameter Measurement

Information section). These guards should be driven from a low-impedance source at the same voltage level

as the common-mode input (see Figure 40).

The inputs of any unused amplifiers should be tied to ground to avoid possible oscillation.

noise performance

The noise specifications in operational amplifier circuits are greatly dependent on the current in the first-stage

differential amplifier. The low input bias current requirements of the TLC27L4 and TLC27L9 result in a very low

noise current, which is insignificant in most applications. This feature makes the devices especially favorable

over bipolar devices when using values of circuit impedance greater than 50 k

, since bipolar devices exhibit

greater noise currents.

background image

TLC27L4, TLC27L4A, TLC27L4B, TLC27L4Y, TLC27L9

LinCMOS

 PRECISION QUAD OPERATIONAL AMPLIFIERS

 

 

SLOS053C – OCTOBER 1987 – REVISED AUGUST 1994

32

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

APPLICATION INFORMATION

noise performance (continued)

VI

(a) NONINVERTING AMPLIFIER

(c) UNITY-GAIN AMPLIFIER

+

(b) INVERTING AMPLIFIER

VI

+

+

VI

VO

VO

VO

Figure 40. Guard-Ring Schemes

output characteristics

The output stage of the TLC27L4 and TLC27L9 is designed to sink and source relatively high amounts of current

(see typical characteristics). If the output is subjected to a short-circuit condition, this high current capability can

cause device damage under certain conditions. Output current capability increases with supply voltage.

All operating characteristics of the TLC27L4 and TLC27L9 were measured using a 20-pF load. The devices

drive higher capacitive loads; however, as output load capacitance increases, the resulting response pole

occurs at lower frequencies, thereby causing ringing, peaking, or even oscillation (see Figure 41). In many

cases, adding a small amount of resistance in series with the load capacitance alleviates the problem.

+

2.5 V

VO

CL

– 2.5 V

VI

(a) CL = 20 pF, RL = NO LOAD

(b) CL = 260 pF, RL = NO LOAD

(c) CL = 310 pF, RL = NO LOAD

(d) TEST CIRCUIT

TA = 25

°

C

f = 1 kHz

VIPP = 1 V

Figure 41. Effect of Capacitive Loads and Test Circuit

background image

TLC27L4, TLC27L4A, TLC27L4B, TLC27L4Y, TLC27L9

LinCMOS

 PRECISION QUAD OPERATIONAL AMPLIFIERS

 

 

SLOS053C – OCTOBER 1987 – REVISED AUGUST 1994

33

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

APPLICATION INFORMATION

output characteristics (continued)

Although the TLC27L4 and TLC27L9 possess excellent high-level output voltage and current capability,

methods for boosting this capability are available, if needed. The simplest method involves the use of a pullup

resistor (Rb) connected from the output to the positive supply rail (see Figure 42). There are two disadvantages

to the use of this circuit. First, the NMOS pulldown transistor N4 (see equivalent schematic) must sink a

comparatively large amount of current. In this circuit, N4 behaves like a linear resistor with an on-resistance

between approximately 60 

 and 180 

, depending on how hard the operational amplifier input is driven. With

very low values of R

P

, a voltage offset from 0 V at the output occurs. Second, pullup resistor R

P

 acts as a drain

load to N4 and the gain of the operational amplifier is reduced at output voltage levels where N5 is not supplying

the output current.

Figure 42. Resistive Pullup to Increase V

OH

+

VI

VDD

RP

VO

R2

R1

RL

IP

IF

IL

IP = Pullup current

required by the

operational amplifier

(typically 500 

µ

A)

Rp =

VDD – VO

IF + IL + IP

Figure 43. Compensation for 

Input Capacitance

+

C

VO

feedback

Operational amplifier circuits nearly always employ feedback, and since feedback is the first prerequisite for

oscillation, some caution is appropriate. Most oscillation problems result from driving capacitive loads

(discussed previously) and ignoring stray input capacitance. A small-value capacitor connected in parallel with

the feedback resistor is an effective remedy (see Figure 43). The value of this capacitor is optimized empirically.

electrostatic discharge protection

The TLC27L4 and TLC27L9 incorporate an internal electrostatic discharge (ESD) protection circuit that

prevents functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2. Care

should be exercised, however, when handling these devices, as exposure to ESD may result in the degradation

of the device parametric performance. The protection circuit also causes the input bias currents to be

temperature dependent and have the characteristics of a reverse-biased diode.

latch-up

Because CMOS devices are susceptible to latch-up due to their inherent parasitic thyristors, the TLC27L4 and

TLC27L9 inputs and outputs were designed to withstand  – 100-mA surge currents without sustaining latch-up;

however, techniques should be used to reduce the chance of latch-up whenever possible. Internal protection

diodes should not, by design, be forward biased. Applied input and output voltage should not exceed the supply

voltage by more than 300 mV. Care should be exercised when using capacitive coupling on pulse generators.

Supply transients should be shunted by the use of decoupling capacitors (0.1 

µ

F typical) located across the

supply rails as close to the device as possible.

background image

TLC27L4, TLC27L4A, TLC27L4B, TLC27L4Y, TLC27L9

LinCMOS

 PRECISION QUAD OPERATIONAL AMPLIFIERS

 

 

SLOS053C – OCTOBER 1987 – REVISED AUGUST 1994

34

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

APPLICATION INFORMATION

latch-up (continued)

The current path established if latch-up occurs is usually between the positive supply rail and ground and can

be triggered by surges on the supply lines and/or voltages on either the output or inputs that exceed the supply

voltage. Once latch-up occurs, the current flow is limited only by the impedance of the power supply and the

forward resistance of the parasitic thyristor and usually results in the destruction of the device. The chance of

latch-up occurring increases with increasing temperature and supply voltages.

+

+

500 k

500 k

5 V

500 k

0.1 

µ

F

500 k

VO2

VO1

1/4

TLC27L4

TLC27L4

1/4

Figure 44. Multivibrator

TLC27L4

1/4

+

100 k

VDD

33 k

100 k

100 k

Set

Reset

VO

NOTE: VDD = 5 V to 16 V

Figure 45. Set /Reset Flip-Flop

background image

TLC27L4, TLC27L4A, TLC27L4B, TLC27L4Y, TLC27L9

LinCMOS

 PRECISION QUAD OPERATIONAL AMPLIFIERS

 

 

SLOS053C – OCTOBER 1987 – REVISED AUGUST 1994

35

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

APPLICATION INFORMATION

+

VDD

VO

90 k

9 k

X1

1

1

B

TLC4066

VDD

VI

S1

S2

C

A

C

A

2

X2

2

B

1 k

Analog

Switch

1/4

TLC27L9

SELECT

AV

S1

S2

10

100

NOTE: VDD = 5 V to 12 V

Figure 46. Amplifier With Digital Gain Selection

+

10 k

VO

100 k

VDD

20 k

VI

1/4

TLC27L4

NOTE: VDD = 5 V to 16 V

Figure 47. Full-Wave Rectifier

background image

TLC27L4, TLC27L4A, TLC27L4B, TLC27L4Y, TLC27L9

LinCMOS

 PRECISION QUAD OPERATIONAL AMPLIFIERS

 

 

SLOS053C – OCTOBER 1987 – REVISED AUGUST 1994

36

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

APPLICATION INFORMATION

+

5 V

0.016 

µ

F

10 k

10 k

VO

0.016 

µ

F

VI

1/4

TLC27L4

NOTE: Normalized to FC = 1 kHz and RL = 10 k

Figure 48. Two-Pole Low-Pass Butterworth Filter

VIA

VDD

+

VIB

R2

100 k

10 k

R1

100 k

R2

TLC27L9

1/4

VO

R1

10 k

NOTE: VDD = 5 V to 16 V

V

O

+

R2

R1

ǒ

V

IB

*

V

IA

Ǔ

Figure 49. Difference Amplifier

background image

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue

any product or service without notice, and advise customers to obtain the latest version of relevant information

to verify, before placing orders, that information being relied on is current and complete. All products are sold

subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those

pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in

accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent

TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily

performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF

DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL

APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR

WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER

CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO

BE FULLY AT THE CUSTOMER’S RISK.

In order to minimize risks associated with the customer’s applications, adequate design and operating

safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent

that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other

intellectual property right of TI covering or relating to any combination, machine, or process in which such

semiconductor products or services might be or are used. TI’s publication of information regarding any third

party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

Copyright 

©

 1998, Texas Instruments Incorporated