background image

1

LT1013/LT1014

Quad Precision Op Amp (LT1014)

Dual Precision Op Amp (LT1013)

The LT

®

1014 is the first precision quad operational amplifier

which directly upgrades designs in the industry standard

14-pin DIP LM324/LM348/OP-11/4156 pin configuration.

It is no longer necessary to compromise specifications,

while saving board space and cost, as compared to single

operational amplifiers.

The LT1014’s low offset voltage of 50

µ

V, drift of 0.3

µ

V/

°

C,

offset current of 0.15nA, gain of 8 million, common-mode

rejection of 117dB and power supply rejection of 120dB

qualify it as four truly precision operational amplifiers.

Particularly important is the low offset voltage, since no

offset null terminals are provided in the quad configura-

tion. Although supply current is only 350

µ

A per amplifier,

a new output stage design sources and sinks in excess of

20mA of load current, while retaining high voltage gain.

Similarly, the LT1013 is the first precision dual op amp in

the 8-pin industry standard configuration, upgrading the

performance of such popular devices as the MC1458/

1558, LM158 and OP-221. The LT1013’s specifications

are similar to (even somewhat better than) the LT1014’s.

Both the LT1013 and LT1014 can be operated off a single

5V power supply: input common-mode range includes

ground; the output can also swing to within a few millivolts

of ground. Crossover distortion, so apparent on previous

single-supply designs, is eliminated. A full set of specifi-

cations is provided with 

±

15V and single 5V supplies.

FEATURES

DESCRIPTIO

N

U

s

Single Supply Operation

Input Voltage Range Extends to Ground

Output Swings to Ground while Sinking Current

s

Pin Compatible to 1458 and 324 with Precision Specs

s

Guaranteed Offset Voltage

150

µ

V Max.

s

Guaranteed Low Drift

2

µ

V/

°

C Max.

s

Guaranteed Offset Current

0.8nA Max.

s

Guaranteed High Gain

5mA Load Current

1.5 Million Min.

17mA Load Current

0.8 Million Min.

s

Guaranteed Low Supply Current

500

µ

A Max.

s

Low Voltage Noise, 0.1Hz to 10Hz

0.55

µ

Vp-p

s

Low Current Noise—Better than 0P-07, 0.07pA/

Hz

APPLICATIO

N

S

U

s

Battery-Powered Precision Instrumentation

Strain Gauge Signal Conditioners

Thermocouple Amplifiers

Instrumentation Amplifiers

s

4mA–20mA Current Loop Transmitters

s

Multiple Limit Threshold Detection

s

Active Filters

s

Multiple Gain Blocks

+

LT1014

1

4

11

2

3

+5V

+5V

1M

4k

OUTPUT A

10mV/

°

C

+

LT1014

7

6

5

1M

OUTPUT B

10mV/

°

C

4k

1.8k

YSI 44007

5k

AT 25

°

C

260

1684

299k

3k

LT1004

1.2V

14

12

13

+

LT1014

USE TYPE K THERMOCOUPLES. ALL RESISTORS = 1% FILM.

COLD JUNCTION COMPENSATION ACCURATE 

TO 

±

1

°

C FROM 0

°

C       60

°

C.

USE 4TH AMPLIFIER FOR OUTPUT C. 

LT1014 Distribution of Offset Voltage

3 Channel Thermocouple Thermometer

INPUT OFFSET VOLTAGE (

µ

V)

–300

0

200

–200

–100

100

300

NUMBER OF UNITS

700

600

500

400

300

200

100

0

V

S

 = 

±

15V

T

A

 = 25

°

C

425 LT1014s

(1700 OP AMPS)

TESTED FROM 

THREE RUNS 

J PACKAGE

, LTC and LT are registered trademarks of Linear Technology Corporation. 

background image

2

LT1013/LT1014

Supply Voltage ......................................................

±

22V

Differential Input Voltage .......................................

±

30V

Input Voltage ............... Equal to Positive Supply Voltage

............5V Below Negative Supply Voltage

Output Short-Circuit Duration .......................... Indefinite

Storage Temperature Range

All Grades ......................................... – 65

°

C to 150

°

C

ABSOLUTE 

M

AXI

M

U

M

 RATINGS

W

W

W

U

Lead Temperature (Soldering, 10 sec.) ................. 300

°

C

Operating Temperature Range

LT1013AM/LT1013M/

LT1014AM/LT1014M ...................... – 55 

°

C to 125

°

C

LT1013AC/LT1013C/LT1013D

LT1014AC/LT1014C/LT1014D ................. 0

°

C to 70

°

C

LT1013I/ LT1014I ............................... – 40

°

C to 85

°

C

LT1013AM/AC

LT1013C/D/I/M

SYMBOL

PARAMETER

CONDITIONS

LT1014AM/AC

LT1014C/D/I/M

UNITS

MIN

TYP

MAX

MIN

TYP

MAX

V

OS

Input Offset Voltage

LT1013

40

150

60

300

µ

V

LT1014

50

180

60

300

µ

V

LT1013D/I, LT1014D/I

200

800

µ

V

Long Term Input Offset Voltage

0.4

0.5

µ

V/Mo.

Stability

I

SO

Input Offset Current

0.15

0.8

0.2

1.5

nA

I

B

Input Bias Current

12

20

15

30

nA

e

n

Input Noise Voltage

0.1Hz to 10Hz

0.55

0.55

µ

Vp-p

e

n

Input Noise Voltage Density

f

O

 = 10Hz

24

24

nV/

Hz

f

O

 = 1000Hz

22

22

nV/

Hz

i

n

Input Noise Current Density

f

O

 = 10Hz

0.07

0.07

pA/

Hz

PACKAGE/ORDER I

N

FOR

M

ATIO

N

W

U

U

LT1014AMJ

LT1014MJ

LT1014ACJ

LT1014CJ

LT1014ACN

LT1014CN

LT1014DN

LT1014IN

ORDER PART

NUMBER

LT1013AMH

LT1013MH

LT1013ACH

LT1013CH

ORDER PART

NUMBER

LT1013AMJ8

LT1013MJ8

LT1013ACJ8

LT1013CJ8

LT1013ACN8

LT1013CN8

LT1013DN8

LT1013IN8

ORDER PART

NUMBER

ORDER PART

NUMBER

LT1013DS8

LT1013IS8

PART MARKING

1013

1013I

ORDER PART

NUMBER

LT1014DS

LT1014IS

PART MARKING

LT1014DS

LT1014IS

ELECTRICAL CHARACTERISTICS

V

S

 = 

±

15V, V

CM

 = 0V, T

A

 = 25

°

C unless otherwise noted

1

2

3

4

8

7

6

5

TOP VIEW

OUTPUT A

–IN A

+IN A

V

V

+

OUTPUT B

–IN B

+IN B

J PACKAGE

8-LEAD CERAMIC DIP

N PACKAGE

8-LEAD PLASTIC DIP

+A

+B

+

B

TOP VIEW

OUTPUT B

V

+

OUTPUT A

–IN A

–IN B

+IN B

+IN A

V

(CASE)

8

7

6

5

3

2

1

4

H PACKAGE

8-LEAD TO-5 METAL CAN

+

A

1

2

3

4

5

6

7

TOP VIEW

J PACKAGE

14-LEAD CERAMIC DIP

N PACKAGE

14-LEAD PLASTIC DIP

14

13

12

11

10

9

8

OUTPUT A

–IN A

+IN A

V

+

+IN B

–IN B

OUTPUT B

OUTPUT D

–IN D

+IN D

V

+IN C

–IN C

OUTPUT C

+A

+D

+

B

+

C

1

2

3

4

8

7

6

5

TOP VIEW

–INA

OUTA

V

+

OUTB

+INA

V

+INB

–INB

SO PACKAGE

8-LEAD PLASTIC SOIC

+

+

NOTE: THIS PIN CONFIGURATION DIFFERS FROM

THE STANDARD 8-PIN DUAL-IN-LINE CONFIGURATION

1

2

3

4

5

6

7

8

TOP VIEW

SO PACKAGE

16-LEAD PLASTIC SOIC

16

15

14

13

12

11

10

9

OUTPUT A

–IN A

+IN A

V

+

+IN B

–IN B

OUTPUT B

NC

OUTPUT D

–IN D

+IN D

V

+IN C

–IN C

OUTPUT C

NC

background image

3

LT1013/LT1014

ELECTRICAL CHARACTERISTICS

V

S

 = 

±

15V, V

CM

 = 0V, T

A

 = 25

°

C unless otherwise noted

LT1013AM/AC

LT1013C/D/I/M

SYMBOL

PARAMETER

CONDITIONS

LT1014AM/AC

LT1014C/D/I/M

UNITS

MIN

TYP

MAX

MIN

TYP

MAX

Input Resistance – Differential

(Note 1)

100

400

70

300

M

                              Common-Mode

5

4

G

A

VOL

Large Signal Voltage Gain

V

O

 = 

±

10V, R

L

 = 2k

1.5

8.0

1.2

7.0

V/

µ

V

V

O

 = 

±

10V, R

L

 = 600

0.8

2.5

0.5

2.0

V/

µ

V

Input Voltage Range

+13.5

+13.8

+13.5

+13.8

V

– 15.0

– 15.3

– 15.0

– 15.3

V

CMRR

Common-Mode Rejection Ratio

V

CM

 = + 13.5V, – 15.0V

100

117

97

114

dB

PSRR

Power Supply Rejection Ratio

V

S

 = 

±

2V to 

±

18V

103

120

100

117

dB

Channel Separation

V

O

 = 

±

10V, R

L

 = 2k

123

140

120

137

dB

 V

OUT

Output Voltage Swing

R

L

 = 2k

±

13

±

14

±

12.5

±

14

V

Slew Rate

0.2

0.4

0.2

0.4

V/

µ

s

I

S

Supply Current

Per Amplifier

0.35

0.50

0.35

0.55

mA

Note 1: This parameter is guaranteed by design and is not tested. Typical

parameters are defined as the 60% yield of parameter distributions of

individual amplifiers; i.e., out of 100 LT1014s (or 100 LT1013s) typically

240 op amps (or 120 ) will be better than the indicated specification.

ELECTRICAL CHARACTERISTICS

LT1013AM/AC

LT1013C/D/I/M

SYMBOL

PARAMETER

CONDITIONS

LT1014AM/AC

LT1014C/D/I/M

UNITS

MIN

TYP

MAX

MIN

TYP

MAX

V

OS

Input Offset Voltage

LT1013

60

250

90

450

µ

V

LT1014

70

280

90

450

µ

V

LT1013D/I, LT1014D/I

250

950

µ

V

I

OS

Input Offset Current

0.2

1.3

0.3

2.0

nA

I

B

Input Bias Current

15

35

18

50

nA

A

VOL

Large Signal Voltage Gain

V

O

 = 5mV to 4V, R

L

 = 500

1.0

1.0

V/

µ

V

Input Voltage Range

+ 3.5

 + 3.8

+3.5

+ 3.8

V

0

– 0.3

0

– 0.3

V

 V

OUT

Output Voltage Swing

Output Low, No Load

15

25

15

25

mV

Output Low, 600

 to Ground

5

10

5

10

mV

Output Low, I

SINK

 = 1mA

220

350

220

350

mV

Output High, No Load

4.0

4.4

4.0

4.4

V

Output High, 600

 to Ground

3.4

4.0

3.4

4.0

V

I

S

Supply Current

Per Amplifier

0.31

0.45

0.32

0.50

mA

V

S

+

 = + 5V, V

S

 = 0V, V

OUT

 = 1.4V, V

CM

 = 0V,  T

A

 = 25

°

C unless otherwise noted

background image

4

LT1013/LT1014

V

S

 = 

±

15V, V

CM

 = 0V,  – 55

°

 T

A

 

 125

°

C unless otherwise noted

ELECTRICAL CHARACTERISTICS

Note 2: This parameter is not 100% tested.

The 

q

 denotes specifications which apply over the full operating temperature range.

LT1013AM

LT1014AM

LT1013M/LT1014M

MIN

TYP

MAX

MIN

TYP

MAX

MIN

TYP

MAX

V

OS

Input Offset Voltage

q

80

300

90

350

110

550

µ

V

V

S

 = + 5V, 0V; V

O

 = + 1.4V

  – 55

°

 T

A

 

 100

°

C

q

80

450

90

480

100

750

µ

V

V

CM

 = 0.1V, T

A

 = 125

°

C

120

450

150

480

200

750

µ

V

V

CM

 = 0V, T

A

 = 125

°

C

250

900

300

960

400

1500

µ

V

Input Offset Voltage Drift

(Note 2)

q

0.4

2.0

0.4

2.0

0.5

2.5

µ

V/

°

C

I

OS

Input Offset Current

q

0.3

2.5

0.3

2.8

0.4

  5.0

nA

V

S

 = + 5V, 0V; V

O

 = +1.4V

q

0.6

6.0

0.7

7.0

0.9

10.0

nA

I

B

Input Bias Current

q

15

30

15

30

18

45

nA

V

S

 = + 5V, 0V; V

O

 = +1.4V

q

20

80

25

90

28

120

nA

A

VOL

Large Signal Voltage Gain

V

O

 = 

±

10V, R

L

 = 2k

q

0.5

2.0

0.4

2.0

0.25

2.0

V/

µ

V

CMRR

Common-Mode Rejection

V

CM

 = +13.0V, – 14.9V

q

97

114

96

114

94

113

dB

PSRR

Power Supply Rejection

V

S

 = 

±

2V to 

±

18V

q

100

117

100

117

97

116

dB

Ratio

V

OUT

Output Voltage Swing

R

L

 = 2k

q

±

12

±

13.8

±

12

±

13.8

±

11.5

±

13.8

V

V

S

 = +5V, 0V

R

L

 = 600

 to Ground

Output Low

q

6

15

 

6

15

 

6

18

mV

Output High

q

 3.2

3.8

   3.2

3.8

3.1

3.8

V

I

S

Supply Current

q

0.38

0.60

0.38

0.60

0.38

0.7

mA

Per Amplifier

V

S

 = +5V, 0V; V

O

 = +1.4V

q

0.34

0.55

0.34

0.55

0.34

  0.65

mA

SYMBOL PARAMETER

CONDITIONS

UNITS

ELECTRICAL CHARACTERISTICS

V

S

 = 

±

15V, V

CM

 = 0V,  –40

°

 T

A

 

 85

°

C for LT1013I, LT1014I, 0

°

 T

A

 

 70

°

C for LT1013C, LT1013D, LT1014C, LT1014D unless otherwise noted

LT1013C/D/I

LT1014C/D/I

MIN

TYP

MAX

MIN

TYP

MAX

MIN

TYP

MAX

V

OS

Input Offset Voltage

q

55

240

65

270

80

400

µ

V

LT1013D/I, LT1014D/I

q

230

1000

µ

V

V

S

 = +5V, 0V; V

O

 = 1.4V

q

75

350

85

380

110

570

µ

V

LT1013D/I, LT1014D/I

V

S

 = +5V, 0V; V

O

 = 1.4V

q

280

1200

µ

V

Average Input Offset

(Note 2)

q

0.3

2.0

0.3

2.0

0.4

2.5

µ

V/

°

C

Voltage Drift

LT1013D/I, LT1014D/I

q

0.7

5.0

µ

V/

°

C

I

OS

Input Offset Current

q

0.2

1.5

0.2

1.7

0.3

2.8

nA

V

S

 = +5V, 0V; V

O

 = 1.4V

q

0.4

3.5

0.4

4.0

0.5

6.0

nA

I

B

Input Bias Current

q

13

25

13

25

16

38

nA

V

S

 = +5V, 0V; V

O

 = 1.4V

q

18

55

20

60

24

90

nA

A

VOL

Large Signal Voltage Gain

V

O

 = 

±

10V, R

L

 = 2k

q

1.0

5.0

1.0

5.0

0.7

4.0

V/

µ

V

CMRR

Common-Mode Rejection

V

CM

 = +13.0V, – 15.0V

q

98

116

98

116

94

113

dB

Ratio

PSRR

Power Supply Rejection

V

S

 = 

±

2V to 

±

18V

q

101

119

101

119

97

116

dB

Ratio

V

OUT

Output Voltage Swing

R

L

 = 2k

q

±

12.5

±

13.9

±

12.5

±

13.9

±

12.0

±

13.9

V

V

S

 = +5V, 0V; R

L

 = 600

Output Low

q

 

6

13

 

6

13

 

6

13

mV

Output High

q

3.3

3.9

3.3

3.9

3.2

3.9

V

I

S

Supply Current per Amplifier

q

0.36

0.55

0.36

0.55

0.37

0.60

mA

V

S

 = +5V, 0V; V

O

 = 1.4V

q

0.32

0.50

0.32

0.50

0.34

0.55

mA

SYMBOL PARAMETER

CONDITIONS

UNITS

LT1013AC

LT1014AC

background image

5

LT1013/LT1014

TYPICAL PERFOR

M

A

N

CE CHARACTERISTICS  

U

W

Offset Voltage Drift with

Temperature of Representative

Units

TEMPERATURE (

°

C)

–50

INPUT OFFSET VOLTAGE (

µ

V)

200

100

0

–100

–200

0

50

75

–25

25

100

125

V

S

 = 

±

15V

TIME AFTER POWER ON (MINUTES)

0

CHANGE IN OFFSET VOLTAGE (

µ

V)

5

4

3

2

1

0

4

1

2

3

5

V

S

 = 

±

15V

T

A

 = 25

°

C

LT1013 CERDIP (J) PACKAGE

LT1013 METAL CAN (H) PACKAGE

LT1014

Warm-Up Drift

BALANCED SOURCE RESISTANCE (

)

1k

3k

10k 30k 100k 300k 1M

3M 10M

INPUT OFFSET VOLTAGE (mV)

10

1

0.1

0.01

V

S

 = 5V, 0V, –55

°

C TO 125

°

C

V

S

 = 

±

15V, 0V, –55

°

C TO 125

°

C

V

S

 = 5V, 0V, 25

°

C

V

S

 = 

±

15V, 0V, 25

°

C

+

R

S

R

S

Offset Voltage vs Balanced

Source Resistance

Common-Mode Rejection Ratio

vs Frequency

0.1Hz to 10Hz Noise

Power Supply Rejection Ratio

vs Frequency

FREQUENCY (Hz)

10

COMMON-MODE REJECTION RATIO (dB)

120

100

80

60

40

20

0

100

1k

10k

100k

1M

V

S

 = 5V, 0V

V

S

 = 

±

15V

T

A

 = 25

°

C

FREQUENCY (Hz)

0.1

POWER SUPPLY REJECTION RATIO (dB)

120

100

80

60

40

20

0

100

10k

1

10

1k

100k

1M

POSITIVE

SUPPLY

NEGATIVE

SUPPLY

V

S

 = 

±

15V + 1V

P-P

 SINE WAVE

T

A

 = 25

°

C

TIME (SECONDS)

0

NOISE VOLTAGE (200nV/DIV)

8

2

4

6

10

T

A

 = 25

°

C

V

S

 = 

±

2V TO 

±

18V

10Hz Voltage Noise

Distribution

Noise Spectrum

Supply Current vs Temperature

FREQUENCY (Hz)

1

VOLTAGE NOISE DENSITY (nV/

Hz)

CURRENT NOISE DENSITY (fA/

Hz)

1000

100

10

300

30

10

100

1k

CURRENT NOISE

VOLTAGE NOISE

1/f CORNER 2Hz

T

A

 = 25

°

C

V

S

 = 

±

2V TO 

±

18V

VOLTAGE NOISE DENSITY (nV/

Hz)

10

NUMBER OF UNITS

200

180

160

140

120

100

80

60

40

20

0

50

20

30

40

60

V

S

 = 

±

15V

T

A

 = 25

°

C

328 UNITS TESTED

FROM THREE RUNS

TEMPERATURE (

°

C)

–50

SUPPLY CURRENT PER AMPLIFIER (

µ

A)

460

420

380

340

300

260

0

50

75

–25

25

100

125

V

S

 = 

±

15V

V

S

 = 5V, 0V

background image

6

LT1013/LT1014

TYPICAL PERFOR

M

A

N

CE CHARACTERISTICS  

U

W

INPUT BIAS CURRENT (nA)

0

COMMON-MODE INPUT VOLTAGE, V

S

 = +5V, 0V (V)

5

4

3

2

1

0

–1

COMMON-MODE INPUT VOLTAGE, V

S

 = 

±

15V (V)

15

10

5

0

–5

–10

–15

–5

–10

–15

–20

–25

–30

T

A

 = 25

°

C

V

S

 = 5V, 0V

V

S

 = 

±

15V

Input Bias Current vs

Common-Mode Voltage

TEMPERATURE (

°

C)

–50

INPUT BIAS CURRENT (nA)

–30

–25

–20

–15

–10

–5

0

25

75

–25

0

50

100

125

V

CM

 = 0V

V

S

 = 5V, 0V

V

S

 = 

±

15V

V

S

 = 

±

2.5V

TEMPERATURE (

°

C)

–50

INPUT OFFSET CURRENT (nA)

1.0

0.8

0.6

0.4

0.2

0

0

50

75

–25

25

100

125

V

CM

 = 0V

V

S

 = 5V, 0V

V

S

 = 

±

2.5V

V

S

 = 

±

15V

Input Bias Current vs

Temperature

Large Signal Transient

Response, V

S

 = 

±

15V

5V/DIV

A

V

 = +1

50

µ

s/DIV

Large Signal Transient

Response, V

S

 = 5V, 0V

A

V

 = +1

10

µ

s/DIV

NO LOAD

INPUT = 0V TO 4V PULSE

4V

2V

0V

Small Signal Transient

Response, V

S

 = 

±

15V

20mV/DIV

A

V

 = +1

2

µ

s/DIV

Large Signal Transient

Response, V

S

 = 5V, 0V

A

V

 = +1

10

µ

s/DIV

R

L

 = 4.7k TO 5V

INPUT = 0V TO 4V PULSE

4V

2V

0V

Output Saturation vs Sink

Current vs Temperature

TEMPERATURE (

°

C)

–50

–25

0

25

50

75

100

125

SATURATION VOLTAGE (V)

10

1

0.1

0.01

V

+

 = 5V TO 30V

V

 = 0V

I

SINK

 = 10mA

I

SINK

 = 5mA

I

SINK

 = 1mA

I

SINK

 = 100

µ

A

I

SINK

 = 10

µ

A

I

SINK

 = 0

A

V

 = +1

20

µ

s/DIV

R

L

 = 600

 TO GROUND

INPUT = 0V TO 100mV PULSE

Small Signal Transient

Response, V

S

 = 5V, 0V

100mV

50mV

0

Input Offset Current vs

Temperature

background image

7

LT1013/LT1014

TYPICAL PERFOR

M

A

N

CE CHARACTERISTICS  

U

W

Voltage Gain vs Frequency

FREQUENCY (Hz)

0.01 0.1

VOLTAGE GAIN (dB)

1M 10M

1

10 100 1k

10k 100k

140

120

100

80

60

40

20

0

–20

V

S

 = 

±

15V

V

S

 = 5V, 0V

T

A

 = 25

°

C

C

L

 = 100pF

LOAD RESISTANCE TO GROUND (

)

100

100k

VOLTAGE GAIN (V/V)

1M

10M

1k

10k

V

O

 = 20mV TO 3.5V

WITH V

S

 = 5V, 0V

T

A

 = 25

°

C, V

S

 = 

±

15V

T

A

 = –55

°

C, V

S

 = 

±

15V

T

A

 = 125

°

C, V

S

 = 

±

15V

T

A

 = –55

°

C, V

S

 = 5V, 0V

T

A

 = 25

°

C, V

S

 = 5V, 0V

T

A

 = 125

°

C, V

S

 = 5V, 0V

V

O

 = 

±

10V WITH V

S

 = 

±

15V

Output Short Circuit Current

vs Time

TIME FROM OUTPUT SHORT TO GROUND (MINUTES)

0

SHORT CIRCUIT CURRENT (mA)

SINKING                            SOURCING

1

2

40

30

20

10

0

–10

–20

–30

–40

3

–55

°

C

25

°

C

25

°

C

125

°

C

125

°

C

–55

°

C

V

S

 = 

±

15V

Voltage Gain vs Load

Resistance

APPLICATIO

N

S I

N

FOR

M

ATIO

N

W

U

U

U

Single Supply Operation

The LT1013/1014 are fully specified for single supply

operation, i.e., when the negative supply is 0V. Input

common-mode range includes ground; the output swings

within a few millivolts of ground. Single supply operation,

however, can create special difficulties, both at the input

and at the output. The LT1013/LT1014 have specific

circuitry which addresses these problems.

At the input, the driving signal can fall below 0V— inad-

vertently or on a transient basis. If the input is more than

a few hundred millivolts below ground, two distinct prob-

lems can occur on previous single supply designs, such as

the LM124, LM158, OP-20, OP-21, OP-220, OP-221, OP-

420:

a) When the input is more than a diode drop below ground,

unlimited current will flow from the substrate (V

 termi-

nal) to the input. This can destroy the unit. On the LT1013/

1014, the 400

 resistors, in series with the input (see

schematic diagram), protect the devices even when the

input is 5V below ground.

Gain, Phase vs Frequency

FREQUENCY (MHz)

0.1

0.3

VOLTAGE GAIN (dB)

20

10

0

–10

PHASE SHIFT (DEGREES)

80

100

120

140

160

180

200

1

3

10

T

A

 = 25

°

C

V

CM

 = 0V

C

L

 = 100pF

PHASE

±

15V

5V, 0V

±

15V

5V, 0V

GAIN

Channel Separation vs

Frequency

FREQUENCY (Hz)

10

CHANNEL SEPARATION (dB)

160

140

120

100

80

60

100k

100

1k

10k

1M

LIMITED BY

THERMAL

INTERACTION

R

S

 = 1k

R

S

 = 100

V

S

 = 

±

15V

T

A

 = 25

°

C

V

IN

 = 20Vp-p to 5kHz

R

L

 = 2k

LIMITED BY

PIN TO PIN

CAPACITANCE

background image

8

LT1013/LT1014

APPLICATIO

N

S I

N

FOR

M

ATIO

N

W

U

U

U

(b) When the input is more than 400mV below ground (at

25

°

C), the input stage saturates (transistors Q3 and Q4)

and phase reversal occurs at the output. This can cause

lock-up in servo systems. Due to a unique phase reversal

protection circuitry (Q21, Q22, Q27, Q28), the LT1013/

1014’s outputs do not reverse, as illustrated below, even

when the inputs are at –1.5V.

There is one circumstance, however, under which the phase

reversal protection circuitry does not function: when the

other op amp on the LT1013, or one specific amplifier of the

other three on the LT1014, is driven hard into negative

saturation at the output.

Phase reversal protection does not work on amplifier:

A when D’s output is in negative saturation. B’s and C’s

outputs have no effect.

B when C’s output is in negative saturation. A’s and D’s

outputs have no effect.

C when B’s output is in negative saturation. A’s and D’s

outputs have no effect.

D when A’s output is negative saturation. B’s and C’s

outputs have no effect.

At the output, the aforementioned single supply designs

either cannot swing to within 600mV of ground (OP-20)  or

cannot sink more than a few microamperes while swing-

ing to ground (LM124, LM158). The LT1013/1014’s

all-NPN output stage maintains its low output resistance

and high gain characteristics until the output is saturated.

In dual supply operations, the output stage is crossover

distortion-free.

Comparator Applications

The single supply operation of the LT1013/1014 lends

itself to its use as a precision comparator with TTL

compatible output:

In systems using both op amps and comparators, the

LT1013/1014 can perform multiple duties; for example,

on the LT1014, two of the devices can be used as op amps

and the other two as comparators.

4V

LT1013/LT1014

NO PHASE REVERSAL

2V

4V

0V

6Vp-p INPUT, – 1.5V TO 4.5V

4V

LM324, LM358, OP-20

EXHIBIT OUTPUT PHASE

REVERSAL

V

S

 = 5V, 0V

50

µ

s/DIV

4

2

0

– 100

0

V

S

 = 5V, 0V

50

µ

s/DIV

2

0

0

100

INPUT (mV)

OUTPUT (V)

INPUT (mV)

OUTPUT (V)

Voltage Follower with Input Exceeding the Negative Common-Mode Range

Comparator Rise Response Time

10mV, 5mV, 2mV Overdrives

Comparator Fall Response Time

to 10mV, 5mV, 2mV Overdrives

2V

2V

0V

0V

4

background image

9

LT1013/LT1014

APPLICATIO

N

S I

N

FOR

M

ATIO

N

W

U

U

U

Low Supply Operation

The minimum supply voltage for proper operation of the

LT1013/1014 is 3.4V (three Ni-Cad batteries). Typical

supply current at this voltage is 290

µ

A, therefore power

dissipation is only one milliwatt per amplifier.

Noise Testing

For applications information on noise testing and calcula-

tions, please see the LT1007 or LT1008 data sheet.

Test Circuit for Offset Voltage and

Offset Drift with Temperature

+

LT1013

OR LT1014

+15V

–15V

100

*

50k*

50k*

V

O

RESISTOR MUST HAVE LOW

THERMOELECTRIC POTENTIAL.

THIS CIRCUIT IS ALSO USED AS THE BURN-IN 

CONFIGURATION, WITH SUPPLY VOLTAGES

INCREASED TO 

±

20V.

V

= 1000V

OS

*

**

TYPICAL APPLICATIO

N

S

U

50MHz Thermal rms to DC Converter

+

+

LT1014

LT1014

8

10

9

7

4

11

6

5

0V–4V

OUTPUT

10k*

10k*

10k*

10k*

10k

10k*

20k

FULL-

SCALE

TRIM

+5V

+

LT1014

14

13

12

10k*

100k*

0.01

0.01

+

LT1014

1

2

3

100k*

0.01

300

*

30k*

1

µ

F

1

µ

F

10k

10k

T1A

T1B

T2B

T2A

BRN

RED

RED

GRN

GRN

BRN

INPUT

300mV–

10V

RMS

+5V

2% ACCURACY, DC–50MHz.

100:1 CREST FACTOR CAPABILITY.

0.1% RESISTOR.

T1–T2 = YELLOW SPRINGS INST. CO. THERMISTOR COMPOSITE #44018.

ENCLOSE T1 AND T2 IN STYROFOAM.

7.5mW DISSIPATION.

*

30k*

+

1/2 LT1013

8

4

7

5

6

+5V

OUTPUT A

R2

R1

1

µ

F

1

µ

F

5

2

3

15

6

18

+INPUT

–INPUT

+

1/2 LT1013

1

3

2

OUTPUT B

R2

R1

1

µ

F

8

11

12

14

7

13

+INPUT

–INPUT

1/2 LTC1043

1/2 LTC1043

16

0.01

OFFSET = 150

µ

V

GAIN =       + 1.

CMRR = 120dB.

COMMON-MODE RANGE IS 0V TO 5V.

R2

R1

1

µ

F

5V Single Supply Dual Instrumentation Amplifier

background image

10

LT1013/LT1014

TYPICAL APPLICATIO

N

S

U

+

+

A2

LT1014

6

5

7

6.98k*

1k*

5k

FLOW

CALIB

1

µ

F

10M

RESPONSE

TIME

100k

1M*

+

A1

LT1014

2

3

1

1M*

1M*

6.25k**

1M*

T2

T1

3.2k*

3.2k**

6.25k**

15

DALE

HL-25

A4

LT1014

12

13

14

4

11

+15V

–15V

300pF

4.7k

+15V

OUTPUT

0Hz       300Hz =

0      300ML/MIN

1N4148

+

A3

LT1014

9

10

8

100k

100k

0.1

100k

383k*

2.7k

–15V

LT1004

–1.2

2N4391

15

 HEATER RESISTOR

FLOW

FLOW

PIPE

T1

T2

1% FILM RESISTOR.

SUPPLIED WITH YSI THERMISTOR NETWORK.

T1, T2 YSI THERMISTOR NETWORK = #44201.

FLOW IN PIPE IS INVERSELY PROPORTIONAL TO

RESISTANCE OF T1–T2 TEMPERATURE DIFFERENCE.

A1–A2 PROVIDE GAIN. A3–A4 PROVIDE LINEARIZED 

FREQUENCY OUTPUT.

*

**

+15V

Hot Wire Anemometer

+

+

+

A4

LT1014

13

14

12

0V–10V = 

0–1000 FEET/MINUTE

10M

RESPONSE

TIME

ADJUST

1

µ

F

1

µ

F

100k

A3

LT1014

9

8

10

500k

2M

FULL-

SCALE

 FLOW

12k

A2

LT1014

6

7

5

150k*

2k

Q4

Q5

Q2

Q3

1000pF

33k

2k

Q2–Q5

CA3046

PIN 3 TO –15V

1k

ZERO

FLOW

3.3k

–15V

150k*

+15V

+

A1

LT1014

2

1

3

Q1

2N6533

220

500pF

+15V

–15V

4

11

0.01

µ

F

10k*

27

1W

2k*

#328

REMOVE LAMP'S GLASS ENVELOPE FROM 328 LAMP.

A1 SERVOS #328 LAMP TO CONSTANT TEMPERATURE.

A2-A3 FURNISH LINEAR OUTPUT vs FLOW RATE.

1% RESISTOR.

*

Liquid Flowmeter

background image

11

LT1013/LT1014

TYPICAL APPLICATIO

N

S

U

5V Powered Precision Instrumentation Amplifier

+

LT1014

6

5

+

LT1014

2

3

7

1

200k*

200k*

RG (TYP 2k)

+5V

+5V

20k

20k

–INPUT

+INPUT

+

LT1014

13

12

14

10k

10k

10k*

10k*

10k*

10k*

OUTPUT

4

11

+5V

+

LT1014

9

10

8

TO 

INPUT

CABLE SHIELDS

1% FILM RESISTOR. MATCH 10k's 0.05%

GAIN EQUATION: A =

 + 1. 

FOR HIGH SOURCE IMPEDANCES,

USE 2N2222 AS DIODES.

400,000

RG

*

1

µ

F

9V Battery Powered Strain Gauge Signal Conditioner

+

LT1014

13

12

14

+

LT1014

6

5

7

+

LT1014

9

10

8

100k

100k

499

499

350

STRAIN GAUGE

BRIDGE

TO A/D RATIO

REFERENCE

2N2219

330

0.01

4.7k

47

µ

F

+9V

TO A/D

22M

+

LT1014

2

3

1

1N4148

100k

100k

100k

0.068

15k

0.068

0.068

15k

3k

15

14

7

6

13

9

+9V

TO A/D

CONVERT COMMAND

1

5

+9V

4

11

74C221

+9V

SAMPLED OPERATION GIVES LOW AVERAGE OPERATING CURRENT 

 650

µ

A.

4.7k–0.01

µ

F RC PROTECTS STRAIN BRIDGE FROM LONG TERM DRIFTS DUE TO 

HIGH 

V/

T STEPS.

background image

12

LT1013/LT1014

TYPICAL APPLICATIO

N

S

U

5V Powered Motor Speed Controller

No Tachometer Required

+

A1

1/2 LT1013

2

3

1

6

5

7

100k

0.47

330k

1M

6.8M

2k

0.068

+

A2

1/2 LT1013

5V

8

4

E

IN

0V–3V

2k

3.3M

Q1

2N3904

0.47

0.068

Q2

1N4148

1N4148

2k

82

1k

+5V

Q3

2N5023

+

1N4001

1N4001

47

MOTOR = CANON–FN30–R13N1B.

A1 DUTY CYCLE MODULATES MOTOR.

A2 SAMPLES MOTORS BACK EMF.

1/4 CD4016

+

LT1013

6

5

7

8

4

1k

4.7M

120k

2N2222

OUTPUT

100K*

6.19K

0.005

+

LT1013

2

3

1

1N4148

LT1004

1.2V

100k

100

10

20k

0.33

0.1

+5V

1N4148

1N4148

1N4148

0.05

2N2222

2N2222

2N2222

4.7k

820

270

820

1N4148

TTL INPUT

1N4148

+5V

MEETS ALL V

PP

 PROGRAMMING SPECS WITH NO TRIMS AND

RUNS OFF 5V SUPPLY—NO EXTERNAL HIGH VOLTAGE SUPPLY REQUIRED.

SUITABLE FOR BATTERY POWERED USE (600

µ

A QUIESCENT CURRENT).

1% METAL FILM.

*

600

µ

s RC

21V

DALE

#TC-10-04

5V Powered EEPROM Pulse Generator

background image

13

LT1013/LT1014

TYPICAL APPLICATIO

N

S

U

Methane Concentration Detector with Linearized Output

+

+

13

12

14

A4

LT1014

74C04

74C04

74C04

470pF

10k

470pF

+5V

–5V

1N4148

OUTPUT

500ppm-10,000ppm

50Hz      1kHz

2k

1N4148 

(

4)

+

6

5

7

A2

LT1014

Q4

Q3

Q2

Q1

150k*

2k

1000pF

100k*

+

2

3

1

A1

LT1014

4

+5V

5k

1000ppm

TRIM

12k*

LTC1044

10

µ

F

4

2

3

5

8

+5V

SENSOR

9

10

8

A3

LT1014

11

100k*

390k*

LT1004

1.2V

10

µ

F

+

0.033

14

1

–5V

+5V

CD4016

1% METAL FILM RESISTOR

SENSOR = CALECTRO-GC ELECTRONICS #J4-807 OR FIGARO #813

*

–5V

+

CA3046

1

14

2.7k

Low Power 9V to 5V Converter

+

LT1013

1

2

3

330k

+9V

LT1004

1.2V

120k

1%

390k

1%

5V

20mA

2N5434

+

LT1013

7

5

6

HP5082-2811

100

µ

A

8

4

+9V

47k

+

47

1N4148

L

10k

10k

2N2905

L = DALE TE-3/Q3/TA.

SHORT CIRCUIT CURRENT = 30mA.

 

 75% EFFICIENCY.

SWITCHING PREREGULATOR CONTROLS DROP ACROSS FET TO 200mV.

+9V INPUT

V

D

 = 200mV

background image

14

LT1013/LT1014

TYPICAL APPLICATIO

N

S

U

5V Powered 4mA–20mA Current Loop Transmitter

+

A2

1/2 LT1013

3

2

1

+

A1

1/2 LT1013

6

5

7

100k

4.3k

+5V

8

4

LT1004

1.2V

+5V

10

µ

F

4mA-20mA OUT 

FULLY FLOATING

8-BIT ACCURACY.

0.1

68k*

301

*

1k

20mA

TRIM

4k*

10k*

2k

4mA

TRIM

INPUT

0V–4V

TO INVERTER

DRIVE

+

T1

1N4002 (4)

Fully Floating Modification to 4mA-20mA Current Loop

+

A2

1/2 LT1013

6

5

7

+

A1

1/2 LT1013

2

3

1

INPUT

0 TO 4V

1k

4mA

TRIM

4k*

10k*

4.3k

+5V

8

4

LT1004

1.2V

2k

Q4

2N2222

100pF

+5V

0.33

100k

10k*

80k*

10k*

20mA

TRIM

10

µ

F

Q1

2N2905

Q2

2N2905

10k

10k

0.002

820

820

10

µ

F

+

100

*

4mA-20mA OUT 

TO LOAD

2.2k

 MAXIMUM

68

Q3

2N2905

+5V

12-BIT ACCURACY.

1% FILM.

T1 = PICO-31080.

*

1N4002 (4)

T1

+

74C04

(6)

background image

15

LT1013/LT1014

TYPICAL APPLICATIO

N

S

U

5V Powered, Linearized Platinum RTD Signal Conditioner

+

A4

1/4 LT1014

9

10

8

OUTPUT

0V–4V = 

0

°

C–400

°

C

±

0.05

°

C

GAIN TRIM

1k

3.01k

150

+

A2

1/4 LT1014

2

3

1

+

A3

1/4 LT1014

6

5

7

2M

5k

LINEARITY

200k

200k

2M

50k

ZERO

TRIM

8.25k

274k

10k

+

A1

1/4 LT1014

13

12

14

+5V

4

11

250k

2.4k

5%

LT1009

2.5V

+5V

SENSOR

Q2

Q1

167

499

1.5k

ROSEMOUNT

118MF

ALL RESISTORS ARE TRW-MAR-6 METAL FILM.

RATIO MATCH 2M–200K 

±

 0.01%.

TRIM SEQUENCE:

SET SENSOR TO 0

°

 VALUE.

ADJUST ZERO FOR 0V OUT.

SET SENSOR TO 100

°

C VALUE.

ADJUST GAIN FOR 1.000V OUT.

SET SENSOR TO 400

°

C.

ADJUST LINEARITY FOR 4.000V OUT, REPEAT AS REQUIRED.

2N4250

(2)

Strain Gauge Bridge Signal Conditioner

+

1/2 LT1013

5

6

7

0.047

2k GAIN TRIM

46k*

100

*

OUTPUT 

0V–3.5V

0psi–350psi

0.33

100k

10k

ZERO

TRIM

A

D

E

C

301k

V

REF

220

+5V

1.2V

OUT

 REFERENCE

TO A/D CONVERTER

FOR RATIOMETRIC OPERATION

1mA MAXIMUM LOAD

+

2

3

1

39k

8

4

+5V

1/2 LT1013

0.1

8

5

2

4

+

100

µ

F

+

100

µ

F

PRESSURE

TRANSDUCER

350

 –V

REF

LTC1044

1% FILM RESISTOR.

PRESSURE TRANSDUCER–BLH/DHF–350.

CIRCLED LETTER IS PIN NUMBER.

*

LT1004

1.2V

background image

16

LT1013/LT1014

TYPICAL APPLICATIO

N

S

U

LVDT Signal Conditioner

+

LT1013

1

3

2

200k

10k

OUT

0V–3V

1

µ

F

100k

14

8

13

13

7

12

11

BLK

GRN

BLUE

RD-

BLUE

+

LT1011 

7

2

3

1/2 LTC1043

1

8

4

1k

+5V

TO PIN 16, LT1043

100k

7.5k

0.01

100k

PHASE

TRIM

LVDT

YEL-BLK

+

LT1013

7

5

6

+5V

–5V

0.005

0.005

30k

30k

10k

4.7k

1.2k

1N914

LT1004

1.2V

+

10

µ

F

2N4338

LVDT = SCHAEVITZ E-100.

FREQUENCY = 

1.5kHz

YEL-RD

Triple Op Amp Instrumentation Amplifier with Bias Current Cancellation

+

1/4 LT1014

9

10

8

OUTPUT

+

1/4 LT1014

6

5

7

+

1/4 LT1014

12

13

14

4

11

R3

R2

R2

R1

R

G

R1

+

1/4 LT1014

2

3

1

V

V

+

100k

10pF

2R

10M

R

5M

+INPUT

–INPUT

R3

GAIN =   1 + 

( )

2R1

R

G

R3

R2

INPUT BIAS CURRENT TYPICALLY <1nA

INPUT RESISTANCE = 3R = 15M FOR VALUES SHOWN

NEGATIVE COMMON-MODE LIMIT = V

 + I

B

 

×

 2R + 30mV 

= 150mV for V

 = 0V

I

B

 = 12nA

2R

10M

background image

17

LT1013/LT1014

TYPICAL APPLICATIO

N

S

U

Voltage Controlled Current Source with

Ground Referred Input and Output

+

LT1013

6

5

7

+

LT1013

2

8

4

3

1

1M

1.4M

82k

0.005

2N5114

2N4391

LT1004

1.2V

100k

+6V

+16V

–16V

0.005

10

+15V

OUT

–15V

OUT

200k

V

OUT

ADJ

+

15pF

15pF

1

µ

F

10

+

+16V

–16V

L1

1MHY

2N3904

2N3906

10k

10k

10k

22k

22k

10k

+V

Q1

CLK 2

D1

Q1

Q2

D2

CLK 1

Q2

74C74

+

100kHz INPUT

L1 = 24-104 AIE VERNITRON

±

5mA OUTPUT

75% EFFICIENCY

+6V

74C00

+6V

 = 1N4148

+

LT1013

3

2

1

8

4

+

A2

LT1013

6

5

7

1M

LT1004

1.2V

1.2k

1N914

0.01

100k

100

120k

30k

V

BATT

6V

0.003

µ

F

5V OUTPUT

50k

OUTPUT ADJUST

10

2

4

5

3

8

LTC1044

100

1N914

+12 OUTPUT

10

2N2219

0.009V DROPOUT AT 5mA OUTPUT.

0.108V DROPOUT AT 100mA OUTPUT.

I

QUIESCENT

 = 850

µ

A.

+

+

Low Dropout Regulator for 6V Battery

+

1/2 LT1013

3

2

1

8

4

+5V

0V–2V

1

µ

F

8

11

12

14

7

13

1/2 LTC1043

0.68

µ

F

1k

100

1

µ

F

I

OUT

 = 0mA TO 15mA

I

OUT

 =

V

IN

100

FOR BIPOLAR OPERATION, 

RUN BOTH ICs FROM 

A BIPOLAR SUPPLY.

6V to 

±

15V Regulating Converter

background image

18

LT1013/LT1014

TYPICAL APPLICATIO

N

S

U

+

1/2 LT1013

1

8

4

3

2

+

1/2 LT1013

7

6

5

+5V

1M*

5M*

20k

4.22M*

4.22M*

100k

+5V

1M*

R

T1

3.2k

1M*

R

T2

6.25k

R

T

YSI 44201

2.16k*

3.4k*

4.3k

TEMPERATURE 

COMPENSATION 

GENERATOR

LT1009

2.5V

+5V

680

100

100k

560k

MV-209

3.5MHz

XTAL

OSCILLATOR SUPPLY

STABILIZATION

OSCILLATOR

510pF

510pF

3.5MHz OUTPUT

0.03ppm/

°

C, 0

°

C–70

°

C

2N2222

1% FILM

3.5MHz XTAL = AT CUT – 35

°

20'

MOUNT R

T

 NEAR XTAL 

3mA POWER DRAIN

THERMISTOR-AMPLIFIER-VARACTOR NETWORK GENERATES 

A TEMPERATURE COEFFICIENT OPPOSITE THE CRYSTAL TO 

MINIMIZE OVERALL OSCILLATOR DRIFT

*

Low Power, 5V Driven, Temperature Compensated Crystal Oscillator (TXCO)

Step-Up Switching Regulator for 6V Battery

+

+

LT1013

5

8

4

6

7

LT1013

3

2

1

0.1

200k

LT1004

1.2V

130k

300

OUTPUT

+15V

50mA

INPUT

+6V

+

100

1N5821

2N5262

L1

1MHY

+

2.2

5.6k

5.6k

220pF

220k

1M

22k

2N2222

0.001

LT = AIE–VERNITRON 24–104

78% EFFICIENCY

background image

19

LT1013/LT1014

SCHE

M

ATIC DIAGRA

M

W

W

1/2 LT1013, 1/4 LT1014

9k

9k

1.6k

5k

2k

5k

Q5

Q6

1.6k

Q16

Q30

Q14

Q13

Q3

Q4

Q1

Q21

400

Q2

Q22

400

Q12

Q11

1.6k

Q15

100

2k

Q9

Q7

Q29

Q17

1.3k

Q20

Q26

10pF

Q8

Q23

Q31

3.9k

21pF

2.5pF

Q32

1k

Q18

Q19

Q25

2.4k

18

100pF

4pF

2k

75pF

Q24

30

42k

14k

Q33

Q34

Q37

Q38

Q40

J1

Q39

Q41

600

800

V

V

+

IN

IN

Q10

OUTPUT

Q35

Q36

Q27

Q28

+

J8 Package

8-Lead CERDIP (Narrow 0.300, Hermetic)

(LTC DWG # 05-08-1110)

N8 Package

8-Lead PDIP (Narrow 0.300)

(LTC DWG # 05-08-1510)

J8 0694

0.014 – 0.026

(0.360 – 0.660)

0.200

(5.080)

MAX

0.015 – 0.060

(0.381 – 1.524)

0.125

3.175

MIN

0.100 

±

 0.010

(2.540 

±

 0.254)

0.300 BSC

(0.762 BSC)

0.008 – 0.018

(0.203 – 0.457)

0

°

 – 15

°

0.385 

±

 0.025

(9.779 

±

 0.635)

0.005

(0.127)

MIN

0.405

(10.287)

MAX

0.220 – 0.310

(5.588 – 7.874)

1

2

3

4

8

7

6

5

0.025

(0.635)

RAD TYP

0.045 – 0.068

(1.143 – 1.727)

FULL LEAD

OPTION

0.023 – 0.045

(0.584 – 1.143)

HALF LEAD

OPTION

CORNER LEADS OPTION 

(4 PLCS)

0.045 – 0.068

(1.143 – 1.727)

NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE OR TIN PLATE LEADS.

N8 0695

0.005

(0.127)

MIN

0.100 

±

 0.010

(2.540 

±

 0.254)

0.065

(1.651)

TYP

0.045 – 0.065

(1.143 – 1.651)

0.130 

±

 0.005

(3.302 

±

 0.127)

0.015

(0.380)

MIN

0.018 

±

 0.003

(0.457 

±

 0.076)

0.125

(3.175)

MIN

1

2

3

4

8

7

6

5

  0.255 

±

 0.015*

(6.477 

±

 0.381)

  0.400*

(10.160)

MAX

0.009 – 0.015

(0.229 – 0.381)

0.300 – 0.325

(7.620 – 8.255)

0.325

+0.025

–0.015

+0.635

–0.381

8.255

(

)

*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.

  MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)

T

j

max

150

°

C

θ

ja

100

°

C / W

T

j

max

100

°

C

θ

ja

130

°

C / W

Information furnished by Linear Technology Corporation is believed to be accurate and reliable.

However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-

tation that the interconnection of its circuits as described herein will not infringe on existing patent rights.

background image

20

LT1013/LT1014

PACKAGE DESCRIPTIO

N

U

H Package

8-Lead TO-5 Metal Can (0.200 PCD)

(LTC DWG # 05-08-1320)

Linear Technology Corporation

1630 McCarthy Blvd., Milpitas, CA 95035-7417

(408) 432-1900

 

q

  

FAX

: (408) 434-0507

 

 

q

 

TELEX

: 499-3977

LT/GP 0196 REV A • PRINTED IN USA

© 

LINEAR TECHNOLOGY CORPORATION 1990

0.050

(1.270)

MAX

    0.016 – 0.021**

(0.406 – 0.533)

  0.010 – 0.045*

(0.254 – 1.143)

SEATING

PLANE

0.040

(1.016)

MAX

0.165 – 0.185

(4.191 – 4.699)

GAUGE

PLANE

REFERENCE

PLANE

0.500 – 0.750

(12.700 – 19.050)

0.305 – 0.335

(7.747 – 8.509)

0.335 – 0.370

(8.509 – 9.398)

DIA

0.200

(5.080)

TYP

0.027 – 0.045

(0.686 – 1.143)

0.027 – 0.034

(0.686 – 0.864)

0.110 – 0.160

(2.794 – 4.064)

INSULATING

STANDOFF

45

°

TYP

H8(TO-5) 0.200 PCD 0595

LEAD DIAMETER IS UNCONTROLLED BETWEEN THE REFERENCE PLANE 

AND 0.045" BELOW THE REFERENCE PLANE

FOR SOLDER DIP LEAD FINISH, LEAD DIAMETER IS

0.016 – 0.024

(0.406 – 0.610)

*

**

NOTE: DIMENSIONS IN INCHES (MILLIMETERS)

T

j

max

150

°

C

θ

ja

150

°

C / W

θ

jc

45

°

C /W

S16 (WIDE) 0695

NOTE 1

  0.398 – 0.413*

(10.109 – 10.490)

16

15

14

13

12

11

10

9

1

2

3

4

5

6

7

8

0.394 – 0.419

(10.007 – 10.643)

0.037 – 0.045

(0.940 – 1.143)

0.004 – 0.012

(0.102 – 0.305)

0.093 – 0.104

(2.362 – 2.642)

0.050

(1.270)

TYP

0.014 – 0.019

(0.356 – 0.482)

TYP

0

°

 – 8

°

 TYP

NOTE 1

0.009 – 0.013

(0.229 – 0.330)

0.016 – 0.050

(0.406 – 1.270)

    0.291 – 0.299**

(7.391 – 7.595)

×

 45

°

0.010 – 0.029

(0.254 – 0.737)

NOTE:

1. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS

    THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS.

DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE

DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE

*

**

1

2

3

4

        0 . 1 5 0   –   0 . 1 5 7 * *

( 3 . 8 1 0   –   3 . 9 8 8 )

8

7

6

5

    0 . 1 8 9   –   0 . 1 9 7 *

( 4 . 8 0 1   –   5 . 0 0 4 )

0 . 2 2 8   –   0 . 2 4 4

( 5 . 7 9 1   –   6 . 1 9 7 )

0 . 0 1 6   –   0 . 0 5 0

0 . 4 0 6   –   1 . 2 7 0

0 . 0 1 0   –   0 . 0 2 0

( 0 . 2 5 4   –   0 . 5 0 8 )

×

  4 5

°

0

°

–   8

°

  T Y P

0 . 0 0 8   –   0 . 0 1 0

( 0 . 2 0 3   –   0 . 2 5 4 )

S O 8     0 6 9 5

0 . 0 5 3   –   0 . 0 6 9

( 1 . 3 4 6   –   1 . 7 5 2 )

0 . 0 1 4   –   0 . 0 1 9

( 0 . 3 5 5   –   0 . 4 8 3 )

0 . 0 0 4   –   0 . 0 1 0

( 0 . 1 0 1   –   0 . 2 5 4 )

0 . 0 5 0

( 1 . 2 7 0 )

B S C

D I M E N S I O N   D O E S   N O T   I N C L U D E   M O L D   F L A S H .   M O L D   F L A S H  

S H A L L   N O T   E X C E E D   0 . 0 0 6 "   ( 0 . 1 5 2 m m )   P E R   S I D E

D I M E N S I O N   D O E S   N O T   I N C L U D E   I N T E R L E A D   F L A S H .   I N T E R L E A D  

F L A S H   S H A L L   N O T   E X C E E D   0 . 0 1 0 "   ( 0 . 2 5 4 m m )   P E R   S I D E

*

* *

S 8   P a c k a g e

8 - L e a d   P l a s t i c   S m a l l   O u t l i n e   ( N a r r o w   0 . 1 5 0 )

( L T C   D W G   #   0 5 - 0 8 - 1 6 1 0 )

S W   P a c k a g e

1 6 - L e a d   P l a s t i c   S m a l l   O u t l i n e   ( W i d e   0 . 3 0 0 )

( L T C   D W G   #   0 5 - 0 8 - 1 6 2 0 )

J   P a c k a g e

1 4 - L e a d   C E R D I P   ( N a r r o w   0 . 3 0 0 ,   H e r m e t i c )

( L T C   D W G   #   0 5 - 0 8 - 1 1 1 0 )

J 1 4   0 6 9 4

0 . 0 4 5   –   0 . 0 6 8

( 1 . 1 4 3   –   1 . 7 2 7 )

0 . 1 0 0  

±

  0 . 0 1 0

( 2 . 5 4 0  

±

  0 . 2 5 4 )

0 . 0 1 4   –   0 . 0 2 6

( 0 . 3 6 0   –   0 . 6 6 0 )

0 . 2 0 0

( 5 . 0 8 0 )

M A X

0 . 0 1 5   –   0 . 0 6 0

( 0 . 3 8 1   –   1 . 5 2 4 )

0 . 1 2 5

( 3 . 1 7 5 )

M I N

0 . 3 0 0   B S C

( 0 . 7 6 2   B S C )

0 . 0 0 8   –   0 . 0 1 8

( 0 . 2 0 3   –   0 . 4 5 7 )

0

°

  –   1 5

°

0 . 3 8 5  

±

  0 . 0 2 5

( 9 . 7 7 9  

±

  0 . 6 3 5 )

1

2

3

4

5

6

7

0.220 – 0.310

(5.588 – 7.874)

0.785

(19.939)

MAX

0.005

(0.127)

MIN

14

11

8

9

10

13

12

0.025

(0.635)

RAD TYP

NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP OR TIN PLATE LEADS.

0.045 – 0.068

(1.143 – 1.727)

FULL LEAD

OPTION

0.023 – 0.045

(0.584 – 1.143)

HALF LEAD

OPTION

CORNER LEADS OPTION 

(4 PLCS)

N Package

14-Lead PDIP (Narrow 0.300)

(LTC DWG # 05-08-1510)

N14 0695

0.015

(0.380)

MIN

0.125

(3.175)

MIN

0.130 

±

 0.005

(3.302 

±

 0.127)

0.045 – 0.065

(1.143 – 1.651)

0.065

(1.651)

TYP

0.018 

±

 0.003

(0.457 

±

 0.076)

0.100 

±

 0.010

(2.540 

±

 0.254)

0.005

(0.125)

MIN

  0.255 

±

 0.015*

(6.477 

±

 0.381)

  0.770*

(19.558)

MAX

3

1

2

4

5

6

7

8

9

10

11

12

13

14

0.009 – 0.015

(0.229 – 0.381)

0.300 – 0.325

(7.620 – 8.255)

0.325

+0.025

–0.015

+0.635

–0.381

8.255

(

)

*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.

  MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)

T

j

max

150

°

C

θ

ja

100

°

C /W

T

j

max

100

°

C

θ

ja

100

°

C / W