background image

TPS2811, TPS2812, TPS2813, TPS2814, TPS2815

DUAL HIGH-SPEED MOSFET DRIVERS

 

 

SLVS132D – NOVEMBER 1995 – REVISED NOVEMBER 1997

1

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

D

Industry-Standard Driver Replacement

D

25-ns Max Rise/Fall Times and 40-ns Max

Propagation Delay – 1-nF Load, V

CC

 = 14 V

D

2-A Peak Output Current, V

CC

 = 14 V

D

5-

µ

A Supply Current — Input High or Low

D

4-V to 14-V Supply-Voltage Range; Internal

Regulator Extends Range to 40 V (TPS2811,

TPS2812, TPS2813)

D

– 40

°

C to 125

°

C Ambient-Temperature

Operating Range

     

description

The TPS28xx series of dual high-speed MOSFET

drivers are capable of delivering peak currents of

2 A into highly capacitive loads. This performance

is achieved with a design that inherently

minimizes shoot-through current and consumes

an order of magnitude less supply current than

competitive products.

The TPS2811, TPS2812, and TPS2813 drivers

include a regulator to allow operation with supply

inputs between 14 V and 40 V. The regulator

output can power other circuitry, provided power

dissipation does not exceed package limitations. When the regulator is not required, REG_IN and REG_OUT

can be left disconnected or both can be connected to V

CC

 or GND.

The TPS2814 and the TPS2815 have 2-input gates that give the user greater flexibility in controlling the

MOSFET. The TPS2814 has AND input gates with one inverting input. The TPS2815 has dual-input NAND

gates.

TPS28xx series drivers, available in 8-pin PDIP, SOIC, and TSSOP packages and as unmounted ICs, operate

over a ambient temperature range of –40

°

C to 125

°

C.

AVAILABLE OPTIONS

PACKAGED DEVICES

CHIP

TA

INTERNAL

REGULATOR

LOGIC FUNCTION

SMALL

OUTLINE

(D)

PLASTIC

DIP

(P)

TSSOP (PW)

CHIP

FORM

(Y)

– 40

°

C

to

Yes

Dual inverting drivers

Dual noninverting drivers

One inverting and one noninverting driver

TPS2811D

TPS2812D

TPS2813D

TPS2811P

TPS2812P

TPS2813P

TPS2811PWLE

TPS2812PWLE

TPS2813PWLE

TPS2811Y

TPS2812Y

TPS2813Y

to

125

°

C

No

Dual 2-input AND drivers, one inverting input on

each driver

Dual 2-input NAND drivers

TPS2814D

TPS2815D

TPS2814P

TPS2815P

TPS2814PWLE

TPS2815PWLE

TPS2814Y

TPS2815Y

The D package is available taped and reeled. Add R suffix to device type (e.g., TPS2811DR). The PW package is only available left-end

taped and reeled and is indicated by the LE suffix on the device type (e.g., TPS2811PWLE).

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of

Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

 

PRODUCTION DATA information is current as of publication date.

Products conform to specifications per the terms of Texas Instruments

standard warranty. Production processing does not necessarily include

testing of all parameters.

Copyright 

©

 1997, Texas Instruments Incorporated

1

2

3

4

8

7

6

5

REG_IN

1IN

GND

2IN

REG_OUT

1OUT

V

CC

2OUT

TPS2811, TPS2812, TPS2813 . . . D, P, AND PW

PACKAGES

(TOP VIEW)

1

2

3

4

8

7

6

5

1IN1

1IN2

2IN1

2IN2

GND

1OUT

V

CC

2OUT

TPS2814 . . . D, P, AND PW PACKAGES

(TOP VIEW)

1

2

3

4

8

7

6

5

1IN1

1IN2

2IN1

2IN2

GND

1OUT

V

CC

2OUT

TPS2815 . . . D, P, AND PW PACKAGES

(TOP VIEW)

background image

TPS2811, TPS2812, TPS2813, TPS2814, TPS2815

DUAL HIGH-SPEED MOSFET DRIVERS

 

 

SLVS132D – NOVEMBER 1995 – REVISED NOVEMBER 1997

2

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

functional block diagram

Regulator

1

2

4

3

REG_IN

1IN

2IN

GND

8

6

7

5

REG_OUT

VCC

1OUT

2OUT

TPS2811

Regulator

1

2

4

3

REG_IN

1IN

2IN

GND

8

6

7

5

REG_OUT

VCC

1OUT

2OUT

TPS2812

Regulator

1

2

4

3

REG_IN

1IN

2IN

GND

8

6

7

5

REG_OUT

VCC

1OUT

2OUT

TPS2813

1

3

8

1IN1

2IN1

GND

6

7

5

VCC

1OUT

2OUT

TPS2814

2

4

1IN2

2IN2

1

3

8

1IN1

2IN1

GND

6

7

5

VCC

1OUT

2OUT

TPS2815

2

4

1IN2

2IN2

REG_IN

7.5 

REG_OUT

regulator diagram (TPS2811, TPS2812,

TPS2813 only)

input stage diagram

To Drive

Stage

IN

VCC

output stage diagram

VCC

OUT

Predrive

background image

TPS2811, TPS2812, TPS2813, TPS2814, TPS2815

DUAL HIGH-SPEED MOSFET DRIVERS

 

 

SLVS132D – NOVEMBER 1995 – REVISED NOVEMBER 1997

3

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TPS28xxY chip information

This chip, when properly assembled, displays characteristics similar to those of the TPS28xx. Thermal

compression or ultrasonic bonding may be used on the doped aluminum bonding pads. The chip may be

mounted with conductive epoxy or a gold-silicon preform.

57

BONDING PAD ASSIGNMENTS

CHIP THICKNESS:  15 MILS TYPICAL

BONDING PADS:  4 

×

 4 MILS MINIMUM

TJmax OPERATING TEMPERATURE = 150

°

C

TOLERANCES ARE  

±

10%.

ALL DIMENSIONS ARE IN MILS.

(7)

(6)

(1)

(5)

(2)

(3)

GND

1OUT

VCC

REG_IN

1IN

TPS2811Y

TPS2812Y

TPS2813Y

REG_OUT

(8)

(4)

2IN

47

(1)

(8)

(7)

(2)

(3)

(4)

(5)

(6)

2OUT

(6)

(5)

(1)

(4)

(2)

(8)

GND

1OUT

VCC

1IN1

1IN2

TPS2814Y

(7)

(3)

2IN1

2OUT

2IN2

(6)

(5)

(1)

(4)

(2)

(8)

GND

1OUT

VCC

1IN1

1IN2

TPS2815Y

(7)

(3)

2IN1

2OUT

2IN2

background image

TPS2811, TPS2812, TPS2813, TPS2814, TPS2815

DUAL HIGH-SPEED MOSFET DRIVERS

 

 

SLVS132D – NOVEMBER 1995 – REVISED NOVEMBER 1997

4

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

Terminal Functions

TPS2811, TPS2812, TPS2813

TERMINAL NUMBERS

TERMINAL

NAME

TPS2811

Dual Inverting 

Drivers

TPS2812

Dual Noninverting

Drivers

TPS2813

Complimentary

Drivers

DESCRIPTION

REG_IN

1

1

1

Regulator input

1IN

2

2

2

Input 1

GND

3

3

3

Ground

2IN

4

4

4

Input 2

2OUT

5 = 2IN

5 = 2IN

5 = 2IN

Output 2

VCC

6

6

6

Supply voltage

1OUT

7 = 1IN

7 = 1IN

7 = 1IN

Output 1

REG_OUT

8

8

8

Regulator output

TPS2814, TPS2815

TERMINAL NUMBERS

TERMINAL

NAME

TPS2814

Dual AND Drivers with Single

Inverting Input

TPS2815 

Dual NAND Drivers

DESCRIPTION

1IN1

1

1

Noninverting input 1 of driver 1

1IN2

2

-

Inverting input 2 of driver 1

1IN2

-

2

Noninverting input 2 of driver 1

2IN1

3

3

Noninverting input 1 of driver 2

2IN2

4

-

Inverting input 2 of driver 2

2IN2

-

4

Noninverting input 2 of driver 2

2OUT

5 = 2IN1 

2IN2

5 = 2IN1 

2IN2

Output 2

VCC

6

6

Supply voltage

1OUT

7 = 1IN1 

1IN2

7 = 1IN1 

1IN2

Output 1

GND

8

8

Ground

DISSIPATION RATING TABLE

PACKAGE

TA 

 25

°

C

POWER RATING

DERATING FACTOR

ABOVE TA = 25

°

C

TA = 70

°

C

POWER RATING

TA = 85

°

C

POWER RATING

P

1090 mW

8.74 mW/

°

C

697 mW

566 mW

D

730 mW

5.84 mW/

°

C

467 mW

380 mW

PW

520 mW

4.17 mW/

°

C

332 mW

270 mW

background image

TPS2811, TPS2812, TPS2813, TPS2814, TPS2815

DUAL HIGH-SPEED MOSFET DRIVERS

 

 

SLVS132D – NOVEMBER 1995 – REVISED NOVEMBER 1997

5

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Regulator input voltage range, REG_IN 

– 0.3 V to 42 V

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Supply voltage, V

CC

 

– 0.3 V to 15 V

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Input voltage range, 1IN, 2IN, 1IN1, 1IN2, 1IN2, 2IN1, 2IN2, 2IN2 

– 0.3 V to V

CC

. . . . . . . . . . . . . . . . . . . . . . . 

Continuous regulator output current, REG_OUT 

25 mA

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Continuous output current, 1OUT, 2OUT 

±

100 mA

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Continuous total power dissipation 

See Dissipation Rating Table

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Operating ambient temperature range, T

A

  – 40

°

C to 125

°

C

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Storage temperature range, T

stg

  – 65

°

C to 150

°

C

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds 

260

°

C

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and

functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not

implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltages are with respect to device GND pin.

recommended operating conditions

MIN

MAX

UNIT

Regulator input voltage range

8

40

V

Supply voltage, VCC

4

14

V

Input voltage, 1IN1, 1IN2, 1IN2, 2IN1, 2IN2, 2IN2, 1IN, 2IN

–0.3

VCC

V

Continuous regulator output current, REG_OUT

0

20

mA

Ambient temperature operating range

– 40

125

°

C

TPS28xx electrical characteristics over recommended operating ambient temperature range,

V

CC 

=

 

10 V, REG_IN open for TPS2811/12/13, C

=

 

1 nF (unless otherwise noted)

inputs

PARAMETER

TEST CONDITIONS

MIN

TYP†

MAX

UNIT

VCC = 5 V

3.3

4

V

Positive-going input threshold voltage

VCC = 10 V

5.8

9

V

VCC = 14 V

8.3

13

V

VCC = 5 V

1

1.6

V

Negative-going input threshold voltage

VCC = 10 V

1

4.2

V

VCC = 14 V

1

6.2

V

Input hysteresis

VCC = 5 V

1.6

V

Input current

Inputs = 0 V or VCC

–1

0.2

1

µ

A

Input capacitance

5

10

pF

† Typicals are for TA = 25

°

C unless otherwise noted.

outputs

PARAMETER

TEST CONDITIONS

MIN

TYP†

MAX

UNIT

High level output voltage

IO = –1 mA

9.75

9.9

V

High-level output voltage

IO = –100 mA

8

9.1

V

Low level output voltage

IO = 1 mA

0.18

0.25

V

Low-level output voltage

IO = 100 mA

1

2

V

Peak output current

VCC = 10 V

2

A

† Typicals are for TA = 25

°

C unless otherwise noted.

background image

TPS2811, TPS2812, TPS2813, TPS2814, TPS2815

DUAL HIGH-SPEED MOSFET DRIVERS

 

 

SLVS132D – NOVEMBER 1995 – REVISED NOVEMBER 1997

6

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

regulator (TPS2811/2812/2813 only)

PARAMETER

TEST CONDITIONS

MIN

TYP†

MAX

UNIT

Output voltage

14 

REG_IN 

40 V,

IO 

20 mA

10

11.5

13

V

Output voltage in dropout

IO = 10 mA,

REG_IN = 10 V

9

9.6

V

† Typicals are for TA = 25

°

C unless otherwise noted.

supply current

PARAMETER

TEST CONDITIONS

MIN

TYP†

MAX

UNIT

Supply current into VCC

Inputs high or low

0.2

5

µ

A

Supply current into REG_IN

REG_IN = 20 V,

REG_OUT open

40

100

µ

A

† Typicals are for TA = 25

°

C unless otherwise noted.

TPS28xxY electrical characteristics at T

A

 = 25

°

C, V

CC 

=

 

10 V, REG_IN open for TPS2811/12/13, 

C

= 1 nF (unless otherwise noted)

inputs

PARAMETER

TEST CONDITIONS

MIN

TYP

MAX

UNIT

VCC = 5 V

3.3

V

Positive-going input threshold voltage

VCC = 10 V

5.8

V

VCC = 14 V

8.2

V

VCC = 5 V

1.6

V

Negative-going input threshold voltage

VCC = 10 V

3.3

V

VCC = 14 V

4.2

V

Input hysteresis

VCC = 5 V

1.2

V

Input current

Inputs = 0 V or VCC

0.2

µ

A

Input capacitance

5

pF

outputs

PARAMETER

TEST CONDITIONS

MIN

TYP

MAX

UNIT

High level output voltage

IO = –1 mA

9.9

V

High-level output voltage

IO = –100 mA

9.1

V

Low level output voltage

IO = 1 mA

0.18

V

Low-level output voltage

IO = 100 mA

1

V

Peak output current

VCC = 10.5 V

2

A

regulator (TPS2811, 2812, 2813)

PARAMETER

TEST CONDITIONS

MIN

TYP

MAX

UNIT

Output voltage

14 

REG_IN 

40 V,

IO 

20 mA

11.5

V

Output voltage in dropout

IO = 10 mA,

REG_IN = 10 V

9.6

V

power supply current

PARAMETER

TEST CONDITIONS

MIN

TYP

MAX

UNIT

Supply current into VCC

Inputs high or low

0.2

µ

A

Supply current into REG_IN

REG_IN = 20 V,

REG_OUT open

40

µ

A

background image

TPS2811, TPS2812, TPS2813, TPS2814, TPS2815

DUAL HIGH-SPEED MOSFET DRIVERS

 

 

SLVS132D – NOVEMBER 1995 – REVISED NOVEMBER 1997

7

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

switching characteristics for all devices over recommended operating ambient temperature range,

REG_IN open for TPS2811/12/13, C

= 1 nF (unless otherwise specified)

PARAMETER

TEST CONDITIONS

MIN

TYP

MAX

UNIT

VCC = 14 V

14

25

tr

Rise time

VCC = 10 V

15

30

ns

VCC = 5 V

20

35

VCC = 14 V

15

25

tf

Fall time

VCC = 10 V

15

30

ns

VCC = 5 V

18

35

VCC = 14 V

25

40

tPHL

Prop delay time high-to-low-level output

VCC = 10 V

25

45

ns

VCC = 5 V

34

50

VCC = 14 V

24

40

tPLH

Prop delay time low-to-high-level output

VCC = 10 V

26

45

ns

VCC = 5 V

36

50

PARAMETER MEASUREMENT INFORMATION

Regulator

50 

0.1 

µ

F

4.7 

µ

F

+

VCC

1 nF

1

2

3

4

8

7

6

5

Input

Output

TPS2811

NOTE A: Input rise and fall times should be 

10 ns for accurate measurement of ac parameters.

Figure 1. Test Circuit For Measurement of Switching Characteristics

background image

TPS2811, TPS2812, TPS2813, TPS2814, TPS2815

DUAL HIGH-SPEED MOSFET DRIVERS

 

 

SLVS132D – NOVEMBER 1995 – REVISED NOVEMBER 1997

8

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

PARAMETER MEASUREMENT INFORMATION

0–10 V dc

xOUT

0.1 

µ

F

4.7 

µ

F

10 V

Current

Loop

1

2

3

4

8

7

6

5

TPS2811

Regulator

+

VCC

Figure 2. Shoot-through Current Test Setup

50%

90%

1IN

1OUT

50%

50%

90%

10%

50%

10%

tPLH

tr

tf

tPHL

0 V

0 V

Figure 3. Typical Timing Diagram (TPS2811)

TYPICAL CHARACTERISTICS

Tables of Characteristics Graphs and Application Information

typical characteristics

PARAMETER

vs PARAMETER 2

FIGURE

PAGE

Rise time

Supply voltage

4

10

Fall time

Supply voltage

5

10

Propagation delay time

Supply voltage

6, 7

10

Supply voltage

8

11

Supply current

Load capacitance

9

11

Ambient temperature

10

11

Input threshold voltage

Supply voltage

11

11

Regulator output voltage

Regulator input voltage

12, 13

12

Regulator quiescent current

Regulator input voltage

14

12

Peak source current

Supply voltage

15

12

Peak sink current

Supply voltage

16

13

Shoot through current

Input voltage, high-to-low

17

13

Shoot-through current

Input voltage, low-to-high

18

13

background image

TPS2811, TPS2812, TPS2813, TPS2814, TPS2815

DUAL HIGH-SPEED MOSFET DRIVERS

 

 

SLVS132D – NOVEMBER 1995 – REVISED NOVEMBER 1997

9

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Tables of Characteristics Graphs and Application Information (Continued)

general applications

PARAMETER

vs PARAMETER 2

FIGURE

PAGE

Switching test circuits and application information

19, 20

15

Voltage of 1OUT vs 2OUT

Time

Low-to-high

21, 23, 25

16, 17

Voltage of 1OUT vs 2OUT

Time

High-to-low

22, 24, 26

16, 17

circuit for measuring paralleled switching characteristics

PARAMETER

vs PARAMETER 2

FIGURE

PAGE

Switching test circuits and application information

27

17

Input voltage vs output voltage

Time

Low-to-high

28, 30

18

Input voltage vs output voltage

Time

High-to-low

29, 31

18

Hex-1 to Hex-4 application information

PARAMETER

vs PARAMETER 2

FIGURE

PAGE

Driving test circuit and application information

32

19

Hex-1 size

33

20

Hex-2 size

36

20

Drain-source voltage vs drain current

Time

Hex-3 size

39

21

Hex-4 size

41

22

Hex-4 size parallel drive

45

23

Hex-1 size

34

20

Hex-2 size

37

21

Drain-source voltage vs gate-source voltage at turn-on

Time

Hex-3 size

40

21

Hex-4 size

43

22

Hex-4 size parallel drive

46

23

Hex-1 size

35

20

Hex-2 size

38

21

Drain-source voltage vs gate-source voltage at turn-off

Time

Hex-3 size

42

22

Hex-4 size

44

22

Hex-4 size parallel drive

47

23

synchronous buck regulator application

PARAMETER

vs PARAMETER 2

FIGURE

PAGE

3.3-V 3-A Synchronous-Rectified Buck Regulator Circuit

48

24

Q1 drain voltage vs gate voltage at turn-on

49

26

Q1 drain voltage vs gate voltage at turn-off

50

26

Q1 drain voltage vs Q2 gate-source voltage

Time

51, 52, 53

26, 27

Output ripple voltage vs inductor current

3 A

54

27

Output ripple voltage vs inductor current

5 A

55

27

background image

TPS2811, TPS2812, TPS2813, TPS2814, TPS2815

DUAL HIGH-SPEED MOSFET DRIVERS

 

 

SLVS132D – NOVEMBER 1995 – REVISED NOVEMBER 1997

10

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 4

16

14

12

10

5

6

7

8

9

10

– Rise T

ime – ns

18

20

RISE TIME

vs

SUPPLY VOLTAGE

22

11

12

13

14

CL = 1 nF

TA = 125

°

C

TA = 75

°

C

TA = 25

°

C

TA = –25

°

C

TA = – 50

°

C

t r

VCC – Supply Voltage – V

Figure 5

16

14

12

10

5

6

7

8

9

10

– Fall T

ime – ns

18

20

FALL TIME

vs

SUPPLY VOLTAGE

22

11

12

13

14

CL = 1 nF

TA = 125

°

C

TA = 75

°

C

TA = 25

°

C

TA = –25

°

C

TA = – 50

°

C

t f

VCC – Supply Voltage – V

Figure 6

30

25

20

15

5

6

7

8

9

10

35

40

45

11

12

13

14

CL = 1 nF

TA = 125

°

C

TA = 75

°

C

TA = 25

°

C

TA = –25

°

C

TA = – 50

°

C

Propagation Delay T

ime,

PROPAGATION DELAY TIME,

HIGH-TO-LOW-LEVEL OUTPUT

vs

SUPPLY VOLTAGE

VCC  – Supply Voltage – V

t        –

PHL

High-T

o-Low-Level Output – ns

Figure 7

30

25

20

15

5

6

7

8

9

10

35

40

45

11

12

13

14

Propagation Delay T

ime, 

PROPAGATION DELAY TIME,

LOW-TO-HIGH-LEVEL OUTPUT

vs

SUPPLY VOLTAGE

VCC  – Supply Voltage – V

t         –

PLH

Low-T

o-High-Level Output – ns

CL = 1 nF

TA = – 50

°

C

TA = 75

°

C

TA = –25

°

C

TA=125

°

C

TA = 25

°

C

background image

TPS2811, TPS2812, TPS2813, TPS2814, TPS2815

DUAL HIGH-SPEED MOSFET DRIVERS

 

 

SLVS132D – NOVEMBER 1995 – REVISED NOVEMBER 1997

11

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 8

8

6

2

0

4

6

8

10

Supply Current – mA

10

14

SUPPLY CURRENT

vs

SUPPLY VOLTAGE

16

12

14

4

12

Duty Cycle = 50%

CL = 1 nF

1 MHz

40 kHz

500 kHz

100 kHz

75 kHz

VCC – Supply Voltage – V

I       –

CC

Figure 9

1.5

1

0.5

0

0

0.5

1

Supply Current – mA

2

SUPPLY CURRENT

vs

LOAD CAPACITANCE

2.5

1.5

2

VCC = 10 V

f = 100 kHz

TA = 25

°

C

CL – Load Capacitance – nF

I       –

CC

Figure 10

1.15

1.13

1.12

1.1

–50

–25

0

25

50

1.16

1.18

1.2

75

100

125

1.19

1.17

1.14

1.11

Supply Current – mA

SUPPLY CURRENT

vs

AMBIENT TEMPERATURE

CL = 1 nF

VCC = 10 V

Duty Cycle = 50%

f = 100 kHz

TA – Temperature – 

°

C

I       –

CC

Figure 11

TA = 25

°

C

5

3

2

0

4

6

8

10

Input Threshold V

oltage – V

7

8

9

12

14

6

4

1

+ Threshold

– Threshold

INPUT THRESHOLD VOLTAGE

vs

SUPPLY VOLTAGE

VCC – Supply Voltage – V

V    –

IT

background image

TPS2811, TPS2812, TPS2813, TPS2814, TPS2815

DUAL HIGH-SPEED MOSFET DRIVERS

 

 

SLVS132D – NOVEMBER 1995 – REVISED NOVEMBER 1997

12

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 12

9

8

7

4

8

12

16

20

24

11

12

14

28

32

36

40

Regulator Output V

oltage – V

REGULATOR OUTPUT VOLTAGE

vs

REGULATOR INPUT VOLTAGE

TA = – 55

°

C

TA = 25

°

C

TA = 125

°

C

RL = 10 k

Regulator Input Voltage – V

13

10

6

5

4

Figure 13

8

6

5

4

6

8

10

10

12

13

12

14

11

9

7

4

Regulator Output V

oltage – V

REGULATOR OUTPUT VOLTAGE

vs

REGULATOR INPUT VOLTAGE

TA = 125

°

C

TA = – 55

°

C

TA = 25

°

C

RL = 10 k

Regulator Input Voltage – V

Figure 14

25

20

10

0

4

8

12

16

20

24

35

45

50

28

32

36

40

TA = 25

°

C

TA = 125

°

C

TA = – 55

°

C

40

30

15

5

Regulator Quiescent Current – 

REGULATOR QUIESCENT CURRENT

vs

REGULATOR INPUT VOLTAGE

A

µ

RL = 10 k

Regulator Input Voltage – V

Figure 15

1

.5

0

4

6

8

10

1.5

2

2.5

12

14

Peak Source Current – 

A

PEAK SOURCE CURRENT

vs

SUPPLY VOLTAGE

VCC – Supply Voltage – V

RL = 0.5 

f = 100 kHz

Duty Cycle = 5%

TA = 25

°

C

background image

TPS2811, TPS2812, TPS2813, TPS2814, TPS2815

DUAL HIGH-SPEED MOSFET DRIVERS

 

 

SLVS132D – NOVEMBER 1995 – REVISED NOVEMBER 1997

13

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

1

.5

0

4

6

8

10

1.5

2

2.5

12

14

Peak Sink Current – 

A

PEAK SINK CURRENT

vs

SUPPLY VOLTAGE

VCC – Supply Voltage – V

RL = 0.5 

f = 100 kHz

Duty Cycle = 5%

TA = 25

°

C

Figure 16

Figure 17

3

2

1

0

10

8

6

4

4

5

6

2

0

Shoot-Through Current – mA

SHOOT-THROUGH CURRENT

vs

INPUT VOLTAGE, HIGH-TO-LOW

VI – Input Voltage, High-to-Low – V

VCC = 10 V

CL = 0

TA = 25

°

C

Figure 18

3

2

1

0

2

4

6

4

5

6

8

10

SHOOT-THROUGH CURRENT

vs

INPUT VOLTAGE, LOW-TO-HIGH

VI – Input Voltage, Low-to-High – V

VCC = 10 V

CL = 0

TA = 25

°

C

Shoot-Through Current – mA

0

background image

TPS2811, TPS2812, TPS2813, TPS2814, TPS2815

DUAL HIGH-SPEED MOSFET DRIVERS

 

 

SLVS132D – NOVEMBER 1995 – REVISED NOVEMBER 1997

14

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

APPLICATION INFORMATION

The TPS2811, TPS2812 and TPS2813 circuits each contain one regulator and two MOSFET drivers. The

regulator can be used to limit V

CC 

to between 10 V and 13 V for a range of input voltages from 14 V to 40 V,

while providing up to 20 mA of dc drive. The TPS2814 and TPS2815 both contain two drivers, each of which

has two inputs. The TPS2811 has inverting drivers, the TPS2812 has noninverting drivers, and the TPS2813

has one inverting and one noninverting driver. The TPS2814 is a dual 2-input AND driver with one inverting input

on each driver, and the TPS2815 is a dual 2-input NAND driver. These MOSFET drivers are capable of supplying

up to 2.1 A or sinking up to 1.9 A (see Figures 15 and 16) of instantaneous current to n-channel or p-channel

MOSFETs. The TPS2811 family of MOSFET drivers have very fast switching times combined with very short

propagation delays. These features enhance the operation of today’s high-frequency circuits.

The CMOS input circuit has a positive threshold of approximately 2/3 of V

CC

, with a negative threshold of 1/3 of

V

CC

, and a very high input impedance in the range of 10

. Noise immunity is also very high because of the

Schmidt trigger switching. In addition, the design is such that the normal shoot-through current in CMOS (when

the input is biased halfway between V

CC 

and ground) is limited to less than 6 mA. The limited shoot-through

is evident in the graphs in Figures 17 and 18. The input stage shown in the functional block diagram better

illustrates the way the front end works. The circuitry of the device is such that regardless of the rise and/or fall

time of the input signal, the output signal will always have a fast transition speed; this basically isolates the

waveforms at the input from the output. Therefore, the specified switching times are not affected by the slopes

of the input waveforms.

The basic driver portion of the circuits operate over a supply voltage range of 4 V to 14 V with a maximum bias

current of 5 

µ

A. Each driver consists of a CMOS input and a buffered output with a 2-A instantaneous drive

capability. They have propagation delays of less than 30 ns and rise and fall times of less than 20 ns each.

Placing a 0.1-

µ

F ceramic capacitor between V

CC

 and ground

 

is recommended; this will supply the

instantaneous current needed by the fast switching and high current surges of the driver when it is driving a

MOSFET.

The output circuit is also shown in the functional block diagram. This driver uses a unique combination of a

bipolar transistor in parallel with a MOSFET for the ability to swing from V

CC 

to ground while providing 2 A of

instantaneous driver current. This unique parallel combination of bipolar and MOSFET output transistors

provides the drive required at V

CC 

and ground to guarantee turn-off of even low-threshold MOSFETs. Typical

bipolar-only output devices don’t easily approach V

CC 

or ground.

The regulator, included in the TPS2811, TPS2812 and TPS2813, has an input voltage range of 14 V to 40 V.

It produces an output voltage of 10 V to 13 V and is capable of supplying from 0 to 20 mA of output current. In

grounded source applications, this extends the overall circuit operation to 40 V by clamping the driver supply

voltage (V

CC

) to a safe level for both the driver and the MOSFET gate. The bias current for full operation is a

maximum of 150 

µ

A. A 0.1-

µ

F capacitor connected between the regulator output and ground is required to

ensure stability. For transient response, an additional 4.7-

µ

F electrolytic capacitor on the output and a 0.1-

µ

F

ceramic capacitor on the input will optimize the performance of this circuit. When the regulator is not in use, it

can be left open at both the input and the output, or the input can be shorted to the output and tied to either the

V

CC 

or the ground pin of the chip.

background image

TPS2811, TPS2812, TPS2813, TPS2814, TPS2815

DUAL HIGH-SPEED MOSFET DRIVERS

 

 

SLVS132D – NOVEMBER 1995 – REVISED NOVEMBER 1997

15

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

APPLICATION INFORMATION

matching and paralleling connections

Figures 21 and 22 show the delays for the rise and fall time of each channel. As can be seen on a 5-ns scale,

there is very little difference between the two channels at no load. Figures 23 and 24 show the difference

between the two channels for a 1-nF load on each output. There is a slight delay on the rising edge, but little

or no delay on the falling edge. As an example of extreme overload, Figures 25 and 26 show the difference

between the two channels, or two drivers in the package, each driving a 10-nF load. As would be expected, the

rise and fall times are significantly slowed down. Figures 28 and 29 show the effect of paralleling the two

channels and driving a 1-nF load. A noticeable improvement is evident in the rise and fall times of the output

waveforms. Finally, Figures 30 and 31 show the two drivers being paralleled to drive the 10-nF load and as could

be expected the waveforms are improved. In summary, the paralleling of the two drivers in a package enhances

the capability of the drivers to handle a larger load. Because of manufacturing tolerances, it is not recommended

to parallel drivers that are not in the same package.

Regulator

50 

1

2

3

4

8

7

6

5

1 nF

Output

0.1 

µ

F

4.7 

µ

F

+

VCC

TPS2811

Figure 19. Test Circuit for Measuring Switching Characteristics

Regulator

50 

1

2

3

4

8

7

6

5

CL(2)

CL(1)

Output 1

0.1 

µ

F

4.7 

µ

F

+

VCC

TPS2811

NOTE A: Input rise and fall times should be 

10 ns for accurate measurement of ac parameters.

Output 2

Figure 20. Test Circuit for Measuring Switching Characteristics with the Inputs Connected in Parallel

background image

TPS2811, TPS2812, TPS2813, TPS2814, TPS2815

DUAL HIGH-SPEED MOSFET DRIVERS

 

 

SLVS132D – NOVEMBER 1995 – REVISED NOVEMBER 1997

16

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

APPLICATION INFORMATION

Figure 21. Voltage of 1OUT vs Voltage at

2OUT, Low-to-High Output Delay

t – Time

TA = 25

°

C

VI = 14 V

CL = 0

Paralleled Inputs

VO at 2OUT (5 V/div, 5 ns/div)

VO at 1OUT (5 V/div, 5 ns/div)

t – Time

TA = 25

°

C

VI = 14 V

CL = 0

Paralleled Input

VO at 2OUT (5 V/div, 5 ns/div)

VO at 1OUT (5 V/div, 5 ns/div)

Figure 22. Voltage at 1OUT vs Voltage

at 2OUT, High-to-Low Output Delay

t – Time

TA = 25

°

C

VI = 14 V

CL = 1 nF Each Output

Paralleled Input

VO at 2OUT

(5 V/div, 10 ns/div)

VO at 1OUT (5 V/div, 10 ns/div)

Figure 23. Voltage at 1OUT vs Voltage at

2OUT, Low-to-High Output Delay

t – Time

VO at 2OUT (5 V/div, 10 ns/div)

VO at 1OUT

(5 V/div, 10 ns/div)

TA = 25

°

C

VI = 14 V

CL = 1 nF on Each Output

Paralleled Input

Figure 24. Voltage at 1OUT vs Voltage at

2OUT, High-to-Low Output Delay

background image

TPS2811, TPS2812, TPS2813, TPS2814, TPS2815

DUAL HIGH-SPEED MOSFET DRIVERS

 

 

SLVS132D – NOVEMBER 1995 – REVISED NOVEMBER 1997

17

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

APPLICATION INFORMATION

t – Time

TA = 25

°

C

VCC  = 14 V

CL = 10 nF on Each Output

Paralleled Input

VO at 2OUT

(5 V/div, 20 ns/div)

VO at 1OUT 

(5 V/div, 20 ns/div)

Figure 25. Voltage at 1OUT vs Voltage at

2OUT, Low-to-High Output Delay

t – Time

TA = 25

°

C

VCC = 14 V

CL = 10 nF on Each Output

Paralleled Input

VO at 2OUT (5 V/div, 20 ns/div)

VO at (5 V/div, 20 ns/div)

Figure 26. Voltage at 1OUT vs Voltage at

2OUT, High-to-Low Output Delay

Regulator

50 

1

2

3

4

8

7

6

5

CL

Output

0.1 

µ

F

4.7 

µ

F

+

VCC

TPS2811

NOTE A: Input rise and fall times should be 

10 ns for accurate measurement of ac parameters.

Figure 27. Test Circuit for Measuring Paralleled Switching Characteristics

background image

TPS2811, TPS2812, TPS2813, TPS2814, TPS2815

DUAL HIGH-SPEED MOSFET DRIVERS

 

 

SLVS132D – NOVEMBER 1995 – REVISED NOVEMBER 1997

18

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

APPLICATION INFORMATION

t – Time

TA = 25

°

C

VCC = 14 V

CL = 1 nF

Paralleled Input

and Output

VO (5 V/div, 20 ns/div)

VI (5 V/div, 20 ns/div)

Figure 28. Input Voltage vs Output Voltage, 

Low-to-High Propagation Delay of Paralleled

Drivers

t – Time

TA = 25

°

C

VCC = 14 V

CL = 1 nF

Paralleled Input

and Output

VO (5 V/div, 20 ns/div)

VI (5 V/div, 20 ns/div)

Figure 29. Input Voltage vs Output Voltage, 

High-to-Low Propagation Delay of Paralleled

Drivers

t – Time

TA = 25

°

C

VCC = 14 V

CL = 10 nF

Paralleled Input

and Output

VO (5 V/div, 20 ns/div)

VI (5 V/div, 20 ns/div)

Figure 30. Input Voltage vs Output Voltage, 

Low-to-High Propagation Delay of Paralleled

Drivers

t – Time

TA = 25

°

C

VCC = 14 V

CL = 10 nF

Paralleled Input

and Output

VO (5 V/div, 20 ns/div)

VI (5 V/div, 20 ns/div)

Figure 31. Input Voltage vs Output Voltage, 

High-to-Low Propagation Delay of Paralleled

Drivers

background image

TPS2811, TPS2812, TPS2813, TPS2814, TPS2815

DUAL HIGH-SPEED MOSFET DRIVERS

 

 

SLVS132D – NOVEMBER 1995 – REVISED NOVEMBER 1997

19

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

APPLICATION INFORMATION

Figures 33 through 47 illustrate the performance of the TPS2811 driving MOSFETs with clamped inductive

loads, similar to what is encountered in discontinuous-mode flyback converters. The MOSFETs that were tested

range in size from Hex-1 to Hex-4, although the TPS28xx family is only recommended for Hex-3 or below.

The test circuit is shown in Figure 32. The layout rules observed in building the test circuit also apply to real

applications. Decoupling capacitor C1 is a 0.1-

µ

F ceramic device, connected between V

CC 

and GND of the

TPS2811, with short lead lengths. The connection between the driver output and the MOSFET gate, and

between GND and the MOSFET source, are as short as possible to minimize inductance. Ideally, GND of the

driver is connected directly to the MOSFET source. The tests were conducted with the pulse generator

frequency set very low to eliminate the need for heat sinking, and the duty cycle was set to turn off the MOSFET

when the drain current reached 50% of its rated value. The input voltage was adjusted to clamp the drain voltage

at 80% of its rating.

As shown, the driver is capable of driving each of the Hex-1 through Hex-3 MOSFETs to switch in 20 ns or less.

Even the Hex-4 is turned on in less than 20 ns. Figures 45, 46 and 47 show that paralleling the two drivers in

a package enhances the gate waveforms and improves the switching speed of the MOSFET. Generally, one

driver is capable of driving up to a Hex-4 size. The TPS2811 family is even capable of driving large MOSFETs

that have a low gate charge.

Regulator

R1

50 

1

2

3

4

8

7

6

5

C1

0.1 

µ

F

C2

4.7 

µ

F

+

VDS

Q1

Current

Loop

L1

CR1

+

VI

VDS

VGS

VCC

Figure 32. TPS2811 Driving Hex-1 through Hex-4 Devices

background image

TPS2811, TPS2812, TPS2813, TPS2814, TPS2815

DUAL HIGH-SPEED MOSFET DRIVERS

 

 

SLVS132D – NOVEMBER 1995 – REVISED NOVEMBER 1997

20

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

APPLICATION INFORMATION

t – Time

TA = 25

°

C

VCC = 14 V

VI = 48 V

VDS (20 V/div, 0.5 

µ

s/div)

ID (0.5 A/div, 0.5 

µ

s/div)

Figure 33. Drain-Source Voltage vs Drain

Current, TPS2811 Driving an IRFD014

(Hex-1 Size)

t – Time

TA = 25

°

C

VCC = 14 V

VI = 48 V

VDS (20 V/div, 50 ns/div)

VGS (5 V/div, 50 ns/div)

Figure 34. Drain-Source Voltage vs

Gate-Source Voltage, at Turn-on,

TPS2811 Driving an IRFD014 (Hex-1 Size)

t – Time

TA = 25

°

C

VCC = 14 V

VI = 48 V

VDS (20 V/div, 50 ns/div)

VGS (5 V/div, 50 ns/div)

Figure 35. Drain-Source Voltage vs

Gate-Source Voltage, at Turn-off, 

TPS2811 Driving an IRFD014 (Hex-1 Size)

t – Time

TA = 25

°

C

VCC = 14 V

VI = 80 V

VDS (50 V/div, 0.2 

µ

s/div)

VGS (0.5 A/div, 0.2 

µ

s/div)

Figure 36. Drain-Source Voltage vs Drain

Current, TPS2811 Driving an IRFD120

(Hex-2 Size)

background image

TPS2811, TPS2812, TPS2813, TPS2814, TPS2815

DUAL HIGH-SPEED MOSFET DRIVERS

 

 

SLVS132D – NOVEMBER 1995 – REVISED NOVEMBER 1997

21

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

APPLICATION INFORMATION

t – Time

TA = 25

°

C

VCC = 14 V

VI = 80 V

VDS (50 V/div, 50 ns/div)

VGS (5 V/div, 50 ns/div)

Figure 37. Drain-Source Voltage vs

Gate-Source Voltage, 

at Turn-on, TPS2811 Driving an IRFD120

(Hex-2 Size)

t – Time

TA = 25

°

C

VCC = 14 V

VI = 80 V

VDS (50 V/div, 50 ns/div)

VGS (5 V/div, 50 ns/div)

Figure 38. Drain-Source Voltage vs

Gate-Source Voltage, 

at Turn-off, TPS2811 Driving an IRFD120

(Hex-2 Size)

t – Time

TA = 25

°

C

VCC = 14 V

VI = 80 V

VDS (50 V/div, 2 

µ

s/div)

ID (5 A/div, 2 

µ

s/div)

Figure 39. Drain-Source Voltage vs Drain

Current, TPS2811 Driving an IRF530

(Hex-3 Size)

t – Time

TA = 25

°

C

VCC = 14 V

VI = 80 V

VDS (50 V/div, 50 ns/div)

VGS (5 A/div, 50 ns/div)

Figure 40. Drain-Source Voltage vs

Gate-Source Voltage, at Turn-on, TPS2811

Driving an IRF530 (Hex-3 Size)

background image

TPS2811, TPS2812, TPS2813, TPS2814, TPS2815

DUAL HIGH-SPEED MOSFET DRIVERS

 

 

SLVS132D – NOVEMBER 1995 – REVISED NOVEMBER 1997

22

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

APPLICATION INFORMATION

t – Time

TA = 25

°

C

VCC = 14 V

VI = 350 V

VDS (50 V/div, 0.2 

µ

s/div)

ID (2 A/div,

0.2 

µ

s/div)

Figure 41. Drain-Source Voltage vs Drain

Current, 

One Driver, TPS2811 Driving an IRF840

(Hex-4 Size)

t – Time

TA = 25

°

C

VCC = 14 V

VI = 80 V

VDS (50 V/div, 50 ns/div)

VGS (5 V/div, 50 ns/div)

Figure 42. Drain-Source Voltage vs

Gate-Source Voltage, 

at Turn-off, TPS2811 Driving an IRF530

(Hex-3 Size)

t – Time

TA = 25

°

C

VCC = 14 V

VI = 350 V

VDS (50 V/div, 50 ns/div)

VGS (5 V/div, 50 ns/div)

Figure 43. Drain-Source Voltage vs

Gate-Source Voltage, at Turn-on, 

One Driver, TPS2811 Driving an IRF840

(Hex-4 Size)

t – Time

TA = 25

°

C

VCC = 14 V

VI = 350 V

VDS (50 V/div, 50 ns/div)

VGS (5 V/div, 50 ns/div)

Figure 44. Drain-Source Voltage vs Gate-Source

Voltage, at Turn-off, One Driver,

TPS2811 Driving an IRF840

(Hex-4 Size)

background image

TPS2811, TPS2812, TPS2813, TPS2814, TPS2815

DUAL HIGH-SPEED MOSFET DRIVERS

 

 

SLVS132D – NOVEMBER 1995 – REVISED NOVEMBER 1997

23

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

APPLICATION INFORMATION

t – Time

TA = 25

°

C

VCC = 14 V

VI = 350 V

VDS (50 V/div, 0.2 

µ

s/div)

ID (2 A/div,

0.2 

µ

s/div)

Figure 45. Drain-Source Voltage vs Drain

Current, Parallel Drivers, 

TPS2811 Driving an IRF840 (Hex-4 Size)

t – Time

TA = 25

°

C

VCC = 14 V

VI = 350 V

VDS (50 V/div,

50 ns/div)

VGS (5 V/div,

50 ns/div)

Figure 46. Drain-Source Voltage vs Gate-Source

Voltage, at Turn-on, Parallel Drivers, 

TPS2811 Driving an IRF840 (Hex-4 Size)

t – Time

TA = 25

°

C

VCC = 14 V

VI = 350 V

VGS (5 V/div, 50 ns/div)

VDS (50 V/div, 50 ns/div)

Figure 47. Drain-Source Voltage vs Gate-Source Voltage, at Turn-off, 

Parallel Drivers, TPS2811 Driving an IRF840 (Hex-4 Size)

background image

TPS2811, TPS2812, TPS2813, TPS2814, TPS2815

DUAL HIGH-SPEED MOSFET DRIVERS

 

 

SLVS132D – NOVEMBER 1995 – REVISED NOVEMBER 1997

24

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

APPLICATION INFORMATION

synchronous buck regulator

Figure 48 is the schematic for a 100-kHz synchronous-rectified buck converter implemented with a TL5001

pulse-width-modulation (PWM) controller and a TPS2812 driver. The bill of materials is provided in Table 1. The

converter operates over an input range from 5.5 V to 12 V and has a 3.3-V output capable of supplying 3 A

continuously and 5 A during load surges. The converter achieves an efficiency of 90.6% at 3 A and 87.6% at

5 A. Figures 49 and 50 show the power switch switching performance. The output ripple voltage waveforms are

documented in Figures 54 and 55.

The TPS2812 drives both the power switch, Q2, and the synchronous rectifier, Q1. Large shoot-through

currents, caused by power switch and synchronous rectifier remaining on simultaneously during the transitions,

are prevented by small delays built into the drive signals, using CR2, CR3, R11, R12, and the input capacitance

of the TPS2812. These delays allow the power switch to turn off before the synchronous rectifier turns on and

vice versa. Figure 51 shows the delay between the drain of Q2 and the gate of Q1; expanded views are provided

in Figures 52 and 53.

REG_IN

1 IN

GND

2 IN

REG_OUT

1 OUT

V

CC

2 OUT

U2

TPS2812D

1

2

3

4

8

7

6

5

Q1

IRF7406

1

3

2

R5

10 k

C11

0.47 

µ

F

C100

100 

µ

F

16 V

C5

100 

µ

F

16 V

1

2

3

4

J1

2

1

Q2

IRF7201

3

CR1

30BQ015

C6

1000 pF

R7

3.3 

L1

27 

µ

F

C12

100 

µ

F

16 V

C7

100 

µ

F

16 V

C13

10 

µ

F

10 V

1

2

3

4

J2

V

V

I

 

GND

GND

3.3 V

3.3 V

GND

GND

U1

TL5001CD

OUT

V

CC

COMP

FB

GND

RT

DTC

SCP

R2

1.6 k

C3

0.0022

µ

F

C2

0.033 

µ

F

R13

10 k

C14

0.1 

µ

F

R6

15 

R10

1 k

R11

30 k

CR2

BAS16ZX

R12

10 k

CR3

BAS16ZX

C15

µ

F

R8

121 k

1%

C9

0.22 

µ

F

C1

µ

F

R4

2.32 k

1%

R3

180 

C4

0.022 

µ

F

R1

1.00 k

1%

R9

90.9 k

1%

8

7

6

5

1

2

3

4

+

+

 

+

+

+

Figure 48. 3.3-V 3-A Synchronous-Rectified Buck Regulator Circuit

background image

TPS2811, TPS2812, TPS2813, TPS2814, TPS2815

DUAL HIGH-SPEED MOSFET DRIVERS

 

 

SLVS132D – NOVEMBER 1995 – REVISED NOVEMBER 1997

25

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

APPLICATION INFORMATION

Table 1. Bill of Materials, 

3.3-V, 3-A Synchronous-Rectified Buck Converter

REFERENCE

DESCRIPTION

VENDOR

U1

TL5001CD, PWM

Texas Instruments,

972-644-5580

U2

TPS2812D, N.I. MOSFET Driver

Texas Instruments,

972-644-5580

CR1

3 A, 15 V, Schottky, 30BQ015

International Rectifier,

310-322-3331

CR2,CR3

Signal Diode, BAS16ZX

Zetex,

516-543-7100

C1

µ

F, 16 V, Tantalum

C2

0.033 

µ

F, 50 V

C3

0.0022 

µ

F, 50 V

C4

0.022 

µ

F, 50 V

C5,C7,C10,C12

100 

µ

F, 16 V, Tantalum, TPSE107M016R0100

AVX,

800-448-9411

C6

1000 pF, 50 V

C9

0.22 

µ

F, 50 V

C11

0.47 

µ

F, 50 V, Z5U

C13

10 

µ

F, 10 V, Ceramic, CC1210CY5V106Z

TDK,

708-803-6100

C14

0.1 

µ

F, 50 V

C15

1.0 

µ

F, 50 V

J1,J2

4-Pin Header

L1

27 

µ

H, 3 A/5 A, SML5040

Nova Magnetics, Inc.,

972-272-8287

Q1

IRF7406, P-FET

International Rectifier,

310-322-3331

Q2

IRF7201, N-FET

International Rectifier,

310-322-3331

R1

1.00 k

, 1%

R2

1.6 k

R3

180 

R4

2.32 k

, 1 %

R5,R12,R13

10 k

R6

15 

R7

3.3 

R8

121 k

, 1%

R9

90.9 k

, 1%

R10

1 k

R11

30 k

NOTES:

2. Unless otherwise specified, capacitors are X7R ceramics.

3. Unless otherwise specified, resistors are 5%, 1/10 W.

background image

TPS2811, TPS2812, TPS2813, TPS2814, TPS2815

DUAL HIGH-SPEED MOSFET DRIVERS

 

 

SLVS132D – NOVEMBER 1995 – REVISED NOVEMBER 1997

26

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

APPLICATION INFORMATION

t – Time

VD (5 V/div, 20 ns/div)

VG (2 V/div, 20 ns/div)

TA = 25

°

C

VI = 12 V

VO = 3.3 V at 5A

Figure 49. Q1 Drain Voltage vs Gate Voltage, 

at Switch Turn-on

Figure 50. Q1 Drain Voltage vs Gate Voltage,

at Switch Turn-off

t – Time

VD (5 V/div, 20 ns/div)

VG (2 V/div, 20 ns/div)

TA = 25

°

C

VI = 12 V

VO = 3.3 V at 5A

t – Time

VGS (2 V/div, 0.5 

µ

s/div)

TA = 25

°

C

VI = 12 V

VO = 3.3 V at 5A

VD (5 V/div, 0.5 

µ

s/div)

Figure 51. Q1 Drain Voltage vs Q2

Gate-Source Voltage

t – Time

VGS (2 V/div, 20 ns/div)

TA = 25

°

C

VI = 12 V

VO = 3.3 V at 5A

VD (5 V/div, 20 ns/div)

Figure 52. Q1 Drain Voltage vs Q2

Gate-Source Voltage

background image

TPS2811, TPS2812, TPS2813, TPS2814, TPS2815

DUAL HIGH-SPEED MOSFET DRIVERS

 

 

SLVS132D – NOVEMBER 1995 – REVISED NOVEMBER 1997

27

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

APPLICATION INFORMATION

t – Time

VGS (2 V/div, 20 ns/div)

TA = 25

°

C

VI = 12 V

VO = 3.3 V at 5A

VD (5 V/div, 20 ns/div)

Figure 53. Q1 Drain Voltage vs Q2 Gate-Source Voltage

t – Time

Output Ripple Voltage (20 mV/div, 2 

µ

s/div)

Inductor Current (1 A/div, 2 

µ

s/div)

TA = 25

°

C

VI = 12 V

VO = 3.3 V at 3A

1

2

Figure 54. Output Ripple Voltage vs

Inductor Current, at 3 A

t – Time

Output Ripple Voltage (20 mV/div, 2 

µ

s/div)

Inductor Current (2 A/div, 2 

µ

s/div)

TA = 25

°

C

VI = 12 V

VO = 3.3 V at 5 A

1

2

Figure 55. Output Ripple Voltage vs

Inductor Current, at 5 A

background image

TPS2811, TPS2812, TPS2813, TPS2814, TPS2815

DUAL HIGH-SPEED MOSFET DRIVERS

 

 

SLVS132D – NOVEMBER 1995 – REVISED NOVEMBER 1997

28

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

MECHANICAL DATA

D (R-PDSO-G**)    

PLASTIC SMALL-OUTLINE PACKAGE

14 PIN SHOWN

4040047 / B 03/95

0.228 (5,80)

0.244 (6,20)

0.069 (1,75) MAX

0.010 (0,25)

0.004 (0,10)

1

14

0.014 (0,35)

0.020 (0,51)

A

0.157 (4,00)

0.150 (3,81)

7

8

0.044 (1,12)

0.016 (0,40)

Seating Plane

0.010 (0,25)

PINS **

0.008 (0,20) NOM

A  MIN

A  MAX

DIM

Gage Plane

0.189

(4,80)

(5,00)

0.197

8

(8,55)

(8,75)

0.337

14

0.344

(9,80)

16

0.394

(10,00)

0.386

0.004 (0,10)

M

0.010 (0,25)

0.050 (1,27)

0

°

– 8

°

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).

D. Four center pins are connected to die mount pad.

E. Falls within JEDEC MS-012

background image

TPS2811, TPS2812, TPS2813, TPS2814, TPS2815

DUAL HIGH-SPEED MOSFET DRIVERS

 

 

SLVS132D – NOVEMBER 1995 – REVISED NOVEMBER 1997

29

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

MECHANICAL DATA

P (R-PDIP-T8)  

PLASTIC DUAL-IN-LINE PACKAGE

4040082 / B 03/95

0.310 (7,87)

0.290 (7,37)

0.010 (0,25) NOM

0.400 (10,60)

0.355 (9,02)

5

8

4

1

0.020 (0,51) MIN

0.070 (1,78) MAX

0.240 (6,10)

0.260 (6,60)

0.200 (5,08) MAX

0.125 (3,18) MIN

0.015 (0,38)

0.021 (0,53)

Seating Plane

M

0.010 (0,25)

0.100 (2,54)

0

°

– 15

°

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Falls within JEDEC MS-001

background image

TPS2811, TPS2812, TPS2813, TPS2814, TPS2815

DUAL HIGH-SPEED MOSFET DRIVERS

 

 

SLVS132D – NOVEMBER 1995 – REVISED NOVEMBER 1997

30

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

MECHANICAL DATA

PW (R-PDSO-G**)   

PLASTIC SMALL-OUTLINE PACKAGE

4040064 / E 08/96

14 PIN SHOWN

Seating Plane

0,05 MIN

1,20 MAX

1

A

7

14

0,19

4,50

4,30

8

6,20

6,60

0,30

0,75

0,50

0,25

Gage Plane

0,15 NOM

0,65

M

0,10

0

°

– 8

°

0,10

PINS **

A  MIN

A  MAX

DIM

2,90

3,10

8

4,90

5,10

14

6,60

6,40

4,90

5,10

16

7,70

20

7,90

24

9,60

9,80

28

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

background image

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue

any product or service without notice, and advise customers to obtain the latest version of relevant information

to verify, before placing orders, that information being relied on is current and complete. All products are sold

subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those

pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in

accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent

TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily

performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF

DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL

APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR

WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER

CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO

BE FULLY AT THE CUSTOMER’S RISK.

In order to minimize risks associated with the customer’s applications, adequate design and operating

safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent

that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other

intellectual property right of TI covering or relating to any combination, machine, or process in which such

semiconductor products or services might be or are used. TI’s publication of information regarding any third

party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

Copyright 

©

 1998, Texas Instruments Incorporated