background image

µ

A7800 SERIES

POSITIVE-VOLTAGE REGULATORS

 

SLVS056E – MAY 1976 – REVISED JULY 1999

1

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

D

3-Terminal Regulators

D

Output Current up to 1.5 A

D

Internal Thermal-Overload Protection

D

High Power-Dissipation Capability

D

Internal Short-Circuit Current Limiting

D

Output Transistor Safe-Area Compensation

D

Direct Replacements for Fairchild 

µ

A7800

Series

description

This series of fixed-voltage monolithic

integrated-circuit voltage regulators is designed

for a wide range of applications. These

applications include on-card regulation for

elimination of noise and distribution problems

associated with single-point regulation. Each of

these regulators can deliver up to 1.5 A of output

current. The internal current-limiting and

thermal-shutdown features of these regulators

essentially make them immune to overload. In

addition to use as fixed-voltage regulators, these

devices can be used with external components to

obtain adjustable output voltages and currents,

and also can be used as the power-pass element

in precision regulators.

The 

µ

A7800C series is characterized for

operation over the virtual junction temperature

range of 0

°

C to 125

°

C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of

Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Copyright 

©

 1999, Texas Instruments Incorporated

PRODUCTION DATA information is current as of publication date.

Products conform to specifications per the terms of Texas Instruments

standard warranty. Production processing does not necessarily include

testing of all parameters.

 

KC PACKAGE

(TOP VIEW)

The COMMON terminal is in electrical

contact with the mounting base.

TO-220AB

OUTPUT

COMMON

INPUT

KTE PACKAGE

(TOP VIEW)

The COMMON terminal is in

electrical contact with the mounting

base.

O

C

I

OUTPUT

COMMON

INPUT

O

C

I

background image

µ

A7800 SERIES

POSITIVE-VOLTAGE REGULATORS

 

SLVS056E – MAY 1976 – REVISED JULY 1999

2

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

AVAILABLE OPTIONS

PACKAGED DEVICES

CHIP

TJ

VO(NOM)

(V)

PLASTIC

FLANGE-MOUNT

(KC)

HEAT-SINK

MOUNTED

(KTE)

CHIP

FORM

(Y)

5

µ

A7805CKC

µ

A7805CKTE

µ

A7805Y

6

µ

A7806CKC

µ

A7806CKTE

µ

A7806Y

8

µ

A7808CKC

µ

A7808CKTE

µ

A7808Y

8.5

µ

A7885CKC

µ

A7885CKTE

µ

A7885Y

C to 125

°

C

10

µ

A7810CKC

µ

A7810CKTE

µ

A7810Y

12

µ

A7812CKC

µ

A7812CKTE

µ

A7812Y

15

µ

A7815CKC

µ

A7815CKTE

µ

A7815Y

18

µ

A7818CKC

µ

A7818CKTE

µ

A7818Y

24

µ

A7824CKC

µ

A7824CKTE

µ

A7824Y

The KTE package is only available taped and reeled. Add the suffix R to the device type

(e.g., 

µ

A7805CKTER). Chip forms are tested at 25

°

C.

schematic

INPUT

OUTPUT

COMMON

background image

µ

A7800 SERIES

POSITIVE-VOLTAGE REGULATORS

 

SLVS056E – MAY 1976 – REVISED JULY 1999

3

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

absolute maximum ratings over operating temperature ranges (unless otherwise noted)

µ

A78xx

UNIT

Input voltage VI

µ

A7824C

40

V

Input voltage, VI

All others

35

V

Virtual junction temperature range, TJ

0 to 150

°

C

Package thermal impedance

θ

JA (see Notes 1 and 2)

KC package

22

°

C

Package thermal impedance, 

θ

JA (see Notes 1 and 2)

KTE package

23

°

C

Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds

260

°

C

Storage temperature range, Tstg

–65 to 150

°

C

† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and

functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not

implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES:

1. Maximum power dissipation is a function of TJ(max), 

θ

JA, and TA. The maximum allowable power dissipation at any allowable

ambient temperature is PD = (TJ(max) – TA)/

θ

JA. Operating at the absolute maximum TJ of 150

°

C can impact reliability. Due to

variations in individual device electrical characteristics and thermal resistance, the built-in thermal overload protection may be

activated at power levels slightly above or below the rated dissipation.

2. The package thermal impedance is calculated in accordance with JESD 51, except for through-hole packages, which use a trace

length of zero.

recommended operating conditions

MIN

MAX

UNIT

µ

A7805C

7

25

µ

A7806C

8

25

µ

A7808C

10.5

25

µ

A7885C

10.5

25

Input voltage, VI

µ

A7810C

12.5

28

V

µ

A7812C

14.5

30

µ

A7815C

17.5

30

µ

A7818C

21

33

µ

A7824C

27

38

Output current, IO

1.5

A

Operating virtual junction temperature, TJ

µ

A7800C series

0

125

°

C

background image

µ

A7800 SERIES

POSITIVE-VOLTAGE REGULATORS

 

SLVS056E – MAY 1976 – REVISED JULY 1999

4

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

electrical characteristics at specified virtual junction temperature, V

I

 = 10 V, I

O

 = 500 mA (unless

otherwise noted)

PARAMETER

TEST CONDITIONS

T †

µ

A7805C

UNIT

PARAMETER

TEST CONDITIONS

TJ†

MIN

TYP

MAX

UNIT

Output voltage

IO = 5 mA to 1 A,

VI = 7 V to 20 V,

25

°

C

4.8

5

5.2

V

Output voltage

O

,

PD

 ≤

 15 W

I

,

0

°

C to 125

°

C

4.75

5.25

V

Input voltage regulation

VI = 7 V to 25 V

25

°

C

3

100

mV

Input voltage regulation

VI = 8 V to 12 V

25

°

C

1

50

mV

Ripple rejection

VI = 8 V to 18 V,

f = 120 Hz

0

°

C to 125

°

C

62

78

dB

Output voltage regulation

IO = 5 mA to 1.5 A

25

°

C

15

100

mV

Output voltage regulation

IO = 250 mA to 750 mA

25

°

C

5

50

mV

Output resistance

f = 1 kHz

0

°

C to 125

°

C

0.017

Temperature coefficient of output voltage

IO = 5 mA

0

°

C to 125

°

C

–1.1

mV/

°

C

Output noise voltage

f = 10 Hz to 100 kHz

25

°

C

40

µ

V

Dropout voltage

IO = 1 A

25

°

C

2

V

Bias current

25

°

C

4.2

8

mA

Bias current change

VI = 7 V to 25 V

0

°

C to 125

°

C

1.3

mA

Bias current change

IO = 5 mA to 1 A

0

°

C to 125

°

C

0.5

mA

Short-circuit output current

25

°

C

750

mA

Peak output current

25

°

C

2.2

A

† Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into

account separately. All characteristics are measured with a 0.33-

µ

F capacitor across the input and a 0.1-

µ

F capacitor across the output.

electrical characteristics at specified virtual junction temperature, V

I

 = 11 V, I

O

 = 500 mA (unless

otherwise noted)

PARAMETER

TEST CONDITIONS

T †

µ

A7806C

UNIT

PARAMETER

TEST CONDITIONS

TJ†

MIN

TYP

MAX

UNIT

Output voltage

IO = 5 mA to 1 A,

VI = 8 V to 21 V,

25

°

C

5.75

6

6.25

V

Output voltage

O

,

PD

 ≤

 15 W

I

,

0

°

C to 125

°

C

5.7

6.3

V

Input voltage regulation

VI = 8 V to 25 V

25

°

C

5

120

mV

Input voltage regulation

VI = 9 V to 13 V

25

°

C

1.5

60

mV

Ripple rejection

VI = 9 V to 19 V,

f = 120 Hz

0

°

C to 125

°

C

59

75

dB

Output voltage regulation

IO = 5 mA to 1.5 A

25

°

C

14

120

mV

Output voltage regulation

IO = 250 mA to 750 mA

25

°

C

4

60

mV

Output resistance

f = 1 kHz

0

°

C to 125

°

C

0.019

Temperature coefficient of output voltage

IO = 5 mA

0

°

C to 125

°

C

–0.8

mV/

°

C

Output noise voltage

f = 10 Hz to 100 kHz

25

°

C

45

µ

V

Dropout voltage

IO = 1 A

25

°

C

2

V

Bias current

25

°

C

4.3

8

mA

Bias current change

VI = 8 V to 25 V

0

°

C to 125

°

C

1.3

mA

Bias current change

IO = 5 mA to 1 A

0

°

C to 125

°

C

0.5

mA

Short-circuit output current

25

°

C

550

mA

Peak output current

25

°

C

2.2

A

† Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into

account separately. All characteristics are measured with a 0.33-

µ

F capacitor across the input and a 0.1-

µ

F capacitor across the output.

background image

µ

A7800 SERIES

POSITIVE-VOLTAGE REGULATORS

 

SLVS056E – MAY 1976 – REVISED JULY 1999

5

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

electrical characteristics at specified virtual junction temperature, V

I

 = 14 V, I

O

 = 500 mA (unless

otherwise noted)

PARAMETER

TEST CONDITIONS

T †

µ

A7808C

UNIT

PARAMETER

TEST CONDITIONS

TJ†

MIN

TYP

MAX

UNIT

Output voltage

IO = 5 mA to 1 A,

VI = 10.5 V to 23 V,

25

°

C

7.7

8

8.3

V

Output voltage

O

,

PD

 ≤

 15 W

I

,

0

°

C to 125

°

C

7.6

8.4

V

Input voltage regulation

VI = 10.5 V to 25 V

25

°

C

6

160

mV

Input voltage regulation

VI = 11 V to 17 V

25

°

C

2

80

mV

Ripple rejection

VI = 11.5 V to 21.5 V,

f = 120 Hz

0

°

C to 125

°

C

55

72

dB

Output voltage regulation

IO = 5 mA to 1.5 A

25

°

C

12

160

mV

Output voltage regulation

IO = 250 mA to 750 mA

25

°

C

4

80

mV

Output resistance

f = 1 kHz

0

°

C to 125

°

C

0.016

Temperature coefficient of output voltage

IO = 5 mA

0

°

C to 125

°

C

–0.8

mV/

°

C

Output noise voltage

f = 10 Hz to 100 kHz

25

°

C

52

µ

V

Dropout voltage

IO = 1 A

25

°

C

2

V

Bias current

25

°

C

4.3

8

mA

Bias current change

VI = 10.5 V to 25 V

0

°

C to 125

°

C

1

mA

Bias current change

IO = 5 mA to 1 A

0

°

C to 125

°

C

0.5

mA

Short-circuit output current

25

°

C

450

mA

Peak output current

25

°

C

2.2

A

† Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into

account separately. All characteristics are measured with a 0.33-

µ

F capacitor across the input and a 0.1-

µ

F capacitor across the output.

electrical characteristics at specified virtual junction temperature, V

I

 = 15 V, I

O

 = 500 mA (unless

otherwise noted)

PARAMETER

TEST CONDITIONS

T †

µ

A7885C

UNIT

PARAMETER

TEST CONDITIONS

TJ†

MIN

TYP

MAX

UNIT

Output voltage

IO = 5 mA to 1 A,

VI = 11 V to 23.5 V,

25

°

C

8.15

8.5

8.85

V

Output voltage

O

,

PD

 ≤

 15 W

I

,

0

°

C to 125

°

C

8.1

8.9

V

Input voltage regulation

VI = 10.5 V to 25 V

25

°

C

6

170

mV

Input voltage regulation

VI = 11 V to 17 V

25

°

C

2

85

mV

Ripple rejection

VI = 11.5 V to 21.5 V,

f = 120 Hz

0

°

C to 125

°

C

54

70

dB

Output voltage regulation

IO = 5 mA to 1.5 A

25

°

C

12

170

mV

Output voltage regulation

IO = 250 mA to 750 mA

25

°

C

4

85

mV

Output resistance

f = 1 kHz

0

°

C to 125

°

C

0.016

Temperature coefficient of output voltage

IO = 5 mA

0

°

C to 125

°

C

–0.8

mV/

°

C

Output noise voltage

f = 10 Hz to 100 kHz

25

°

C

55

µ

V

Dropout voltage

IO = 1 A

25

°

C

2

V

Bias current

25

°

C

4.3

8

mA

Bias current change

VI = 10.5 V to 25 V

0

°

C to 125

°

C

1

mA

Bias current change

IO = 5 mA to 1 A

0

°

C to 125

°

C

0.5

mA

Short-circuit output current

25

°

C

450

mA

Peak output current

25

°

C

2.2

A

† Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into

account separately. All characteristics are measured with a 0.33-

µ

F capacitor across the input and a 0.1-

µ

F capacitor across the output.

background image

µ

A7800 SERIES

POSITIVE-VOLTAGE REGULATORS

 

SLVS056E – MAY 1976 – REVISED JULY 1999

6

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

electrical characteristics at specified virtual junction temperature, V

I

 = 17 V, I

O

 = 500 mA (unless

otherwise noted)

PARAMETER

TEST CONDITIONS

T †

µ

A7810C

UNIT

PARAMETER

TEST CONDITIONS

TJ†

MIN

TYP

MAX

UNIT

Output voltage

IO = 5 mA to 1 A,

VI = 12.5 V to 25 V,

25

°

C

9.6

10

10.4

V

Output voltage

O

,

PD

 ≤

 15 W

I

,

0

°

C to 125

°

C

9.5

10

10.5

V

Input voltage regulation

VI = 12.5 V to 28 V

25

°

C

7

200

mV

Input voltage regulation

VI = 14 V to 20 V

25

°

C

2

100

mV

Ripple rejection

VI = 13 V to 23 V,

f = 120 Hz

0

°

C to 125

°

C

55

71

dB

Output voltage regulation

IO = 5 mA to 1.5 A

25

°

C

12

200

mV

Output voltage regulation

IO = 250 mA to 750 mA

25

°

C

4

100

mV

Output resistance

f = 1 kHz

0

°

C to 125

°

C

0.018

W

Temperature coefficient of output voltage

IO = 5 mA

0

°

C to 125

°

C

–1

mV/

°

C

Output noise voltage

f = 10 Hz to 100 kHz

25

°

C

70

µ

V

Dropout voltage

IO = 1 A

25

°

C

2

V

Bias current

25

°

C

4.3

8

mA

Bias current change

VI = 12.5 V to 28 V

0

°

C to 125

°

C

1

mA

Bias current change

IO = 5 mA to 1 A

0

°

C to 125

°

C

0.5

mA

Short-circuit output current

25

°

C

400

mA

Peak output current

25

°

C

2.2

A

† Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into

account separately. All characteristics are measured with a 0.33-

µ

F capacitor across the input and a 0.1-

µ

F capacitor across the output.

electrical characteristics at specified virtual junction temperature, V

I

 = 19 V, I

O

 = 500 mA (unless

otherwise noted)

PARAMETER

TEST CONDITIONS

T †

µ

A7812C

UNIT

PARAMETER

TEST CONDITIONS

TJ†

MIN

TYP

MAX

UNIT

Output voltage

IO = 5 mA to 1 A,

VI = 14.5 V to 27 V,

25

°

C

11.5

12

12.5

V

Output voltage

O

,

PD

 ≤

 15 W

I

,

0

°

C to 125

°

C

11.4

12.6

V

Input voltage regulation

VI = 14.5 V to 30 V

25

°

C

10

240

mV

Input voltage regulation

VI = 16 V to 22 V

25

°

C

3

120

mV

Ripple rejection

VI = 15 V to 25 V,

f = 120 Hz

0

°

C to 125

°

C

55

71

dB

Output voltage regulation

IO = 5 mA to 1.5 A

25

°

C

12

240

mV

Output voltage regulation

IO = 250 mA to 750 mA

25

°

C

4

120

mV

Output resistance

f = 1 kHz

0

°

C to 125

°

C

0.018

W

Temperature coefficient of output voltage

IO = 5 mA

0

°

C to 125

°

C

–1

mV/

°

C

Output noise voltage

f = 10 Hz to 100 kHz

25

°

C

75

µ

V

Dropout voltage

IO = 1 A

25

°

C

2

V

Bias current

25

°

C

4.3

8

mA

Bias current change

VI = 14.5 V to 30 V

0

°

C to 125

°

C

1

mA

Bias current change

IO = 5 mA to 1 A

0

°

C to 125

°

C

0.5

mA

Short-circuit output current

25

°

C

350

mA

Peak output current

25

°

C

2.2

A

† Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into

account separately. All characteristics are measured with a 0.33-

µ

F capacitor across the input and a 0.1-

µ

F capacitor across the output.

background image

µ

A7800 SERIES

POSITIVE-VOLTAGE REGULATORS

 

SLVS056E – MAY 1976 – REVISED JULY 1999

7

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

electrical characteristics at specified virtual junction temperature, V

I

 = 23 V, I

O

 = 500 mA (unless

otherwise noted)

PARAMETER

TEST CONDITIONS

T †

µ

A7815C

UNIT

PARAMETER

TEST CONDITIONS

TJ†

MIN

TYP

MAX

UNIT

Output voltage

IO = 5 mA to 1 A,

VI = 17.5 V to 30 V,

25

°

C

14.4

15

15.6

V

Output voltage

O

,

PD

 ≤

 15 W

I

,

0

°

C to 125

°

C

14.25

15.75

V

Input voltage regulation

VI = 17.5 V to 30 V

25

°

C

11

300

mV

Input voltage regulation

VI = 20 V to 26 V

25

°

C

3

150

mV

Ripple rejection

VI = 18.5 V to 28.5 V,

f = 120 Hz

0

°

C to 125

°

C

54

70

dB

Output voltage regulation

IO = 5 mA to 1.5 A

25

°

C

12

300

mV

Output voltage regulation

IO = 250 mA to 750 mA

25

°

C

4

150

mV

Output resistance

f = 1 kHz

0

°

C to 125

°

C

0.019

W

Temperature coefficient of output voltage

IO = 5 mA

0

°

C to 125

°

C

–1

mV/

°

C

Output noise voltage

f = 10 Hz to 100 kHz

25

°

C

90

µ

V

Dropout voltage

IO = 1 A

25

°

C

2

V

Bias current

25

°

C

4.4

8

mA

Bias current change

VI = 17.5 V to 30 V

0

°

C to 125

°

C

1

mA

Bias current change

IO = 5 mA to 1 A

0

°

C to 125

°

C

0.5

mA

Short-circuit output current

25

°

C

230

mA

Peak output current

25

°

C

2.1

A

† Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into

account separately. All characteristics are measured with a 0.33-

µ

F capacitor across the input and a 0.1-

µ

F capacitor across the output.

electrical characteristics at specified virtual junction temperature, V

I

 = 27 V, I

O

 = 500 mA (unless

otherwise noted)

PARAMETER

TEST CONDITIONS

T †

µ

A7818C

UNIT

PARAMETER

TEST CONDITIONS

TJ†

MIN

TYP

MAX

UNIT

Output voltage

IO = 5 mA to 1 A,

VI = 21 V to 33 V,

25

°

C

17.3

18

18.7

V

Output voltage

O

,

PD

 ≤

 15 W

I

,

0

°

C to 125

°

C

17.1

18.9

V

Input voltage regulation

VI = 21 V to 33 V

25

°

C

15

360

mV

Input voltage regulation

VI = 24 V to 30 V

25

°

C

5

180

mV

Ripple rejection

VI = 22 V to 32 V,

f = 120 Hz

0

°

C to 125

°

C

53

69

dB

Output voltage regulation

IO = 5 mA to 1.5 A

25

°

C

12

360

mV

Output voltage regulation

IO = 250 mA to 750 mA

25

°

C

4

180

mV

Output resistance

f = 1 kHz

0

°

C to 125

°

C

0.022

W

Temperature coefficient of output voltage

IO = 5 mA

0

°

C to 125

°

C

–1

mV/

°

C

Output noise voltage

f = 10 Hz to 100 kHz

25

°

C

110

µ

V

Dropout voltage

IO = 1 A

25

°

C

2

V

Bias current

25

°

C

4.5

8

mA

Bias current change

VI = 21 V to 33 V

0

°

C to 125

°

C

1

mA

Bias current change

IO = 5 mA to 1 A

0

°

C to 125

°

C

0.5

mA

Short-circuit output current

25

°

C

200

mA

Peak output current

25

°

C

2.1

A

† Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into

account separately. All characteristics are measured with a 0.33-

µ

F capacitor across the input and a 0.1-

µ

F capacitor across the output.

background image

µ

A7800 SERIES

POSITIVE-VOLTAGE REGULATORS

 

SLVS056E – MAY 1976 – REVISED JULY 1999

8

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

electrical characteristics at specified virtual junction temperature, V

I

 = 33 V, I

O

 = 500 mA (unless

otherwise noted)

PARAMETER

TEST CONDITIONS

T †

µ

A7824C

UNIT

PARAMETER

TEST CONDITIONS

TJ†

MIN

TYP

MAX

UNIT

Output voltage

IO = 5 mA to 1 A,

VI = 27 V to 38 V,

25

°

C

23

24

25

V

Output voltage

O

,

PD

 ≤

 15 W

I

,

0

°

C to 125

°

C

22.8

25.2

V

Input voltage regulation

VI = 27 V to 38 V

25

°

C

18

480

mV

Input voltage regulation

VI = 30 V to 36 V

25

°

C

6

240

mV

Ripple rejection

VI = 28 V to 38 V,

f = 120 Hz

0

°

C to 125

°

C

50

66

dB

Output voltage regulation

IO = 5 mA to 1.5 A

25

°

C

12

480

mV

Output voltage regulation

IO = 250 mA to 750 mA

25

°

C

4

240

mV

Output resistance

f = 1 kHz

0

°

C to 125

°

C

0.028

W

Temperature coefficient of output voltage

IO = 5 mA

0

°

C to 125

°

C

–1.5

mV/

°

C

Output noise voltage

f = 10 Hz to 100 kHz

25

°

C

170

µ

V

Dropout voltage

IO = 1 A

25

°

C

2

V

Bias current

25

°

C

4.6

8

mA

Bias current change

VI = 27 V to 38 V

0

°

C to 125

°

C

1

mA

Bias current change

IO = 5 mA to 1 A

0

°

C to 125

°

C

0.5

mA

Short-circuit output current

25

°

C

150

mA

Peak output current

25

°

C

2.1

A

† Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into

account separately. All characteristics are measured with a 0.33-

µ

F capacitor across the input and a 0.1-

µ

F capacitor across the output.

electrical characteristics at specified virtual junction temperature, V

I

 = 10 V, I

O

 = 500 mA, T

J

 = 25

°

C

(unless otherwise noted)

PARAMETER

TEST CONDITIONS

µ

A7805Y

UNIT

PARAMETER

TEST CONDITIONS

MIN

TYP

MAX

UNIT

Output voltage

5

V

Input voltage regulation

VI = 7 V to 25 V

3

mV

Input voltage regulation

VI = 8 V to 12 V

1

mV

Ripple rejection

VI = 8 V to 18 V,

f = 120 Hz

78

dB

Output voltage regulation

IO = 5 mA to 1.5 A

15

mV

Output voltage regulation

IO = 250 mA to 750 mA

5

mV

Output resistance

f = 1 kHz

0.017

W

Temperature coefficient of output voltage

IO = 5 mA

–1.1

mV/

°

C

Output noise voltage

f = 10 Hz to 100 kHz

40

µ

V

Dropout voltage

IO = 1 A

2

V

Bias current

4.2

mA

Short-circuit output current

750

mA

Peak output current

2.2

A

† Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into

account separately. All characteristics are measured with a 0.33-

µ

F capacitor across the input and a 0.1-

µ

F capacitor across the output.

background image

µ

A7800 SERIES

POSITIVE-VOLTAGE REGULATORS

 

SLVS056E – MAY 1976 – REVISED JULY 1999

9

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

electrical characteristics at specified virtual junction temperature, V

I

 = 11 V, I

O

 = 500 mA, T

J

 = 25

°

C

(unless otherwise noted)

PARAMETER

TEST CONDITIONS

µ

A7806Y

UNIT

PARAMETER

TEST CONDITIONS

MIN

TYP

MAX

UNIT

Output voltage

6

V

Input voltage regulation

VI = 8 V to 25 V

5

mV

Input voltage regulation

VI = 9 V to 13 V

1.5

mV

Ripple rejection

VI = 9 V to 19 V,

f = 120 Hz

75

dB

Output voltage regulation

IO = 5 mA to 1.5 A

14

mV

Output voltage regulation

IO = 250 mA to 750 mA

4

mV

Output resistance

f = 1 kHz

0.019

W

Temperature coefficient of output voltage

IO = 5 mA

–0.8

mV/

°

C

Output noise voltage

f = 10 Hz to 100 kHz

45

µ

V

Dropout voltage

IO = 1 A

2

V

Bias current

4.3

mA

Short-circuit output current

550

mA

Peak output current

2.2

A

† Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into

account separately. All characteristics are measured with a 0.33-

µ

F capacitor across the input and a 0.1-

µ

F capacitor across the output.

electrical characteristics at specified virtual junction temperature, V

I

 = 14 V, I

O

 = 500 mA, T

J

 = 25

°

C

(unless otherwise noted)

PARAMETER

TEST CONDITIONS

µ

A7808Y

UNIT

PARAMETER

TEST CONDITIONS

MIN

TYP

MAX

UNIT

Output voltage

8

V

Input voltage regulation

VI = 10.5 V to 25 V

6

mV

Input voltage regulation

VI = 11 V to 17 V

2

mV

Ripple rejection

VI = 11.5 V to 21.5 V,

f = 120 Hz

72

dB

Output voltage regulation

IO = 5 mA to 1.5 A

12

mV

Output voltage regulation

IO = 250 mA to 750 mA

4

mV

Output resistance

f = 1 kHz

0.016

W

Temperature coefficient of output voltage

IO = 5 mA

–0.8

mV/

°

C

Output noise voltage

f = 10 Hz to 100 kHz

52

µ

V

Dropout voltage

IO = 1 A

2

V

Bias current

4.3

mA

Short-circuit output current

450

mA

Peak output current

2.2

A

† Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into

account separately. All characteristics are measured with a 0.33-

µ

F capacitor across the input and a 0.1-

µ

F capacitor across the output.

background image

µ

A7800 SERIES

POSITIVE-VOLTAGE REGULATORS

 

SLVS056E – MAY 1976 – REVISED JULY 1999

10

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

electrical characteristics at specified virtual junction temperature, V

I

 = 15 V, I

O

 = 500 mA, T

J

 = 25

°

C

(unless otherwise noted)

PARAMETER

TEST CONDITIONS

µ

A7885Y

UNIT

PARAMETER

TEST CONDITIONS

MIN

TYP

MAX

UNIT

Output voltage

8.5

V

Input voltage regulation

VI = 10.5 V to 25 V

6

mV

Input voltage regulation

VI = 11 V to 17 V

2

mV

Ripple rejection

VI = 11.5 V to 21.5 V,

f = 120 Hz

70

dB

Output voltage regulation

IO = 5 mA to 1.5 A

12

mV

Output voltage regulation

IO = 250 mA to 750 mA

4

mV

Output resistance

f = 1 kHz

0.016

W

Temperature coefficient of output voltage

IO = 5 mA

–0.8

mV/

°

C

Output noise voltage

f = 10 Hz to 100 kHz

55

µ

V

Dropout voltage

IO = 1 A

2

V

Bias current

4.3

mA

Short-circuit output current

450

mA

Peak output current

2.2

A

† Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into

account separately. All characteristics are measured with a 0.33-

µ

F capacitor across the input and a 0.1-

µ

F capacitor across the output.

electrical characteristics at specified virtual junction temperature, V

I

 = 17 V, I

O

 = 500 mA, T

J

 = 25

°

C

(unless otherwise noted)

PARAMETER

TEST CONDITIONS

µ

A7810Y

UNIT

PARAMETER

TEST CONDITIONS

MIN

TYP

MAX

UNIT

Output voltage

10

V

Input voltage regulation

VI = 12.5 V to 28 V

7

mV

Input voltage regulation

VI = 14 V to 20 V

2

mV

Ripple rejection

VI = 13 V to 23 V,

f = 120 Hz

71

dB

Output voltage regulation

IO = 5 mA to 1.5 A

12

mV

Output voltage regulation

IO = 250 mA to 750 mA

4

mV

Output resistance

f = 1 kHz

0.018

W

Temperature coefficient of output voltage

IO = 5 mA

–1

mV/

°

C

Output noise voltage

f = 10 Hz to 100 kHz

70

µ

V

Dropout voltage

IO = 1 A

2

V

Bias current

4.3

mA

Short-circuit output current

400

mA

Peak output current

2.2

A

† Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into

account separately. All characteristics are measured with a 0.33-

µ

F capacitor across the input and a 0.1-

µ

F capacitor across the output.

background image

µ

A7800 SERIES

POSITIVE-VOLTAGE REGULATORS

 

SLVS056E – MAY 1976 – REVISED JULY 1999

11

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

electrical characteristics at specified virtual junction temperature, V

I

 = 19 V, I

O

 = 500 mA, T

J

 = 25

°

C

(unless otherwise noted)

PARAMETER

TEST CONDITIONS

µ

A7812Y

UNIT

PARAMETER

TEST CONDITIONS

MIN

TYP

MAX

UNIT

Output voltage

12

V

Input voltage regulation

VI = 14.5 V to 30 V

10

mV

Input voltage regulation

VI = 16 V to 22 V

3

mV

Ripple rejection

VI = 15 V to 25 V,

f = 120 Hz

71

dB

Output voltage regulation

IO = 5 mA to 1.5 A

12

mV

Output voltage regulation

IO = 250 mA to 750 mA

4

mV

Output resistance

f = 1 kHz

0.018

W

Temperature coefficient of output voltage

IO = 5 mA

–1

mV/

°

C

Output noise voltage

f = 10 Hz to 100 kHz

75

µ

V

Dropout voltage

IO = 1 A

2

V

Bias current

4.3

mA

Short-circuit output current

350

mA

Peak output current

2.2

A

† Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into

account separately. All characteristics are measured with a 0.33-

µ

F capacitor across the input and a 0.1-

µ

F capacitor across the output.

electrical characteristics at specified virtual junction temperature, V

I

 = 23 V, I

O

 = 500 mA, T

J

 = 25

°

C

(unless otherwise noted)

PARAMETER

TEST CONDITIONS

µ

A7815Y

UNIT

PARAMETER

TEST CONDITIONS

MIN

TYP

MAX

UNIT

Output voltage

15

V

Input voltage regulation

VI = 17.5 V to 30 V

11

mV

Input voltage regulation

VI = 20 V to 26 V

3

mV

Ripple rejection

VI = 18.5 V to 28.5 V,

f = 120 Hz

70

dB

Output voltage regulation

IO = 5 mA to 1.5 A

12

mV

Output voltage regulation

IO = 250 mA to 750 mA

4

mV

Output resistance

f = 1 kHz

0.019

W

Temperature coefficient of output voltage

IO = 5 mA

–1

mV/

°

C

Output noise voltage

f = 10 Hz to 100 kHz

90

µ

V

Dropout voltage

IO = 1 A

2

V

Bias current

4.4

mA

Short-circuit output current

230

mA

Peak output current

2.1

A

† Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into

account separately. All characteristics are measured with a 0.33-

µ

F capacitor across the input and a 0.1-

µ

F capacitor across the output.

background image

µ

A7800 SERIES

POSITIVE-VOLTAGE REGULATORS

 

SLVS056E – MAY 1976 – REVISED JULY 1999

12

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

electrical characteristics at specified virtual junction temperature, V

I

 = 27 V, I

O

 = 500 mA, T

J

 = 25

°

C

(unless otherwise noted)

PARAMETER

TEST CONDITIONS

µ

A7818Y

UNIT

PARAMETER

TEST CONDITIONS

MIN

TYP

MAX

UNIT

Output voltage

18

V

Input voltage regulation

VI = 21 V to 33 V

15

mV

Input voltage regulation

VI = 24 V to 30 V

5

mV

Ripple rejection

VI = 22 V to 32 V,

f = 120 Hz

69

dB

Output voltage regulation

IO = 5 mA to 1.5 A

12

mV

Output voltage regulation

IO = 250 mA to 750 mA

4

mV

Output resistance

f = 1 kHz

0.022

W

Temperature coefficient of output voltage

IO = 5 mA

–1

mV/

°

C

Output noise voltage

f = 10 Hz to 100 kHz

110

µ

V

Dropout voltage

IO = 1 A

2

V

Bias current

4.5

mA

Short-circuit output current

200

mA

Peak output current

2.1

A

† Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into

account separately. All characteristics are measured with a 0.33-

µ

F capacitor across the input and a 0.1-

µ

F capacitor across the output.

electrical characteristics at specified virtual junction temperature, V

I

 = 33 V, I

O

 = 500 mA, T

J

 = 25

°

C

(unless otherwise noted)

PARAMETER

TEST CONDITIONS

µ

A7824Y

UNIT

PARAMETER

TEST CONDITIONS

MIN

TYP

MAX

UNIT

Output voltage

24

V

Input voltage regulation

VI = 27 V to 38 V

18

mV

Input voltage regulation

VI = 30 V to 36 V

6

mV

Ripple rejection

VI = 28 V to 38 V,

f = 120 Hz

66

dB

Output voltage regulation

IO = 5 mA to 1.5 A

12

mV

Output voltage regulation

IO = 250 mA to 750 mA

4

mV

Output resistance

f = 1 kHz

0.028

W

Temperature coefficient of output voltage

IO = 5 mA

–1.5

mV/

°

C

Output noise voltage

f = 10 Hz to 100 kHz

170

µ

V

Dropout voltage

IO = 1 A

2

V

Bias current

4.6

mA

Short-circuit output current

150

mA

Peak output current

2.1

A

† Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into

account separately. All characteristics are measured with a 0.33-

µ

F capacitor across the input and a 0.1-

µ

F capacitor across the output.

background image

µ

A7800 SERIES

POSITIVE-VOLTAGE REGULATORS

 

SLVS056E – MAY 1976 – REVISED JULY 1999

13

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

APPLICATION INFORMATION

+VO

+V

0.1 

µ

F

0.33 

µ

F

µ

A78xx

Figure 1. Fixed-Output Regulator

OUT

IN

G

–VO

COM

+

VI

IL

µ

A78xx

Figure 2. Positive Regulator in Negative Configuration (V

I

 Must Float)

R1

0.33 

µ

F

Input

Output

µ

A78xx

0.1 

µ

F

IO

R2

V

O

+

V

xx

)

ǒ

V

xx

R1

)

I

Q

Ǔ

R2

NOTE A: The following formula is used when Vxx is the nominal output voltage (output to common) of the fixed regulator:

Figure 3. Adjustable-Output Regulator

VO(Reg)

R1

Input

IO

IO = (VO/R1) + IO Bias Current

0.33 

µ

F

µ

A78xx

Output

Figure 4. Current Regulator

background image

µ

A7800 SERIES

POSITIVE-VOLTAGE REGULATORS

 

SLVS056E – MAY 1976 – REVISED JULY 1999

14

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

APPLICATION INFORMATION

µ

A7815C

0.1 

µ

F

1N4001

0.1 

µ

F

1N4001

0.33 

µ

F

µ

F

1N4001

1N4001

VO = 15 V

VO = –15 V

20-V Input

–20-V Input

µ

A7915C

µ

F

Figure 5. Regulated Dual Supply

operation with a load common to a voltage of opposite polarity

In many cases, a regulator powers a load that is not connected to ground but, instead, is connected to a voltage

source of opposite polarity (e.g., operational amplifiers, level-shifting circuits, etc.). In these cases, a clamp

diode should be connected to the regulator output as shown in Figure 6. This protects the regulator from output

polarity reversals during startup and short-circuit operation.

µ

A78xx

+VO

+VI

–VO

1N4001

or

Equivalent

Figure 6. Output Polarity-Reversal-Protection Circuit

reverse-bias protection

Occasionally, the input voltage to the regulator can collapse faster than the output voltage. This can occur, for

example, when the input supply is crowbarred during an output overvoltage condition. If the output voltage is

greater than approximately 7 V, the emitter-base junction of the series-pass element (internal or external) could

break down and be damaged. To prevent this, a diode shunt can be used as shown in Figure 7.

µ

A78xx

+VO

VI

Figure 7. Reverse-Bias-Protection Circuit

background image

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue

any product or service without notice, and advise customers to obtain the latest version of relevant information

to verify, before placing orders, that information being relied on is current and complete. All products are sold

subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those

pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in

accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent

TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily

performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF

DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL

APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR

WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER

CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO

BE FULLY AT THE CUSTOMER’S RISK.

In order to minimize risks associated with the customer’s applications, adequate design and operating

safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent

that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other

intellectual property right of TI covering or relating to any combination, machine, or process in which such

semiconductor products or services might be or are used. TI’s publication of information regarding any third

party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

Copyright 

©

 1999, Texas Instruments Incorporated