background image

TK112xx

January, 1996  TOKO, Inc.

Page 1

1-3-96

TK112XXM

BLOCK DIAGRAM

VOLTAGE  REGULATOR WITH ON/OFF SWITCH

FEATURES

s

Low Dropout Voltage

s

CMOS/TTL Compatible ON/OFF Switch

s

Very Low Standby Current 180 

µ

A (ON, No Load)

s

Internal Thermal Shutdown

s

Short Circuit Protection

s

Very Low (0.1 

µ

A) Current in OFF Mode

s

Low Noise with External Bypass Capacitor

APPLICATIONS

s

Battery Powered Systems

s

Cellular Telephones

s

Pagers

s

Personal Communications Equipment

s

Portable Instrumentation

s

Portable Consumer Equipment

s

Radio Control Systems

s

Toys

s

Low Voltage Systems

1

3

CONTROL

GND

6

4

V

IN

V

O

TK112

M PO

2

5

GND

BYPASS

DESCRIPTION

The TK112XX is a low power,  linear  regulator with a built-

in electronic switch.   The internal electronic switch can be

controlled by TTL or CMOS logic levels.  The device is in

the ON state when the control pin is pulled to a high logic

level. A pin for a bypass capacitor is provided, which

connects to the internal circuitry, to lower the overall  output

noise level.

An internal  PNP pass-transistor is used in order to achieve

low dropout voltage (typically 100 mV at 30 mA load

current). The device has very low quiescent current (180

µ

A) in the ON mode with no load and 1 mA with 30 mA load.

The quiescent current is typically 2.5 mA at 60 mA load.

When the device is in standby mode (V

CONT

 = 0), the

quiescent current is typically 100 nA. An internal thermal

shutdown circuit limits the junction temperature to below

150 

°

C. The load current is internally monitored and the

device will shut down in the presence of a short circuit at the

output.

TK112      

 

M 

Voltage Code

Tape/Reel Code

TAPE/REEL CODE

BX : Bulk/Bag

TL  : Tape Left

ORDERING INFORMATION

     VOLTAGE CODE

27 = 2.75 V

30 = 3.0 V

32 = 3.25 V

35 = 3.5 V

40 = 4.0 V

45 = 4.5 V

47 = 4.75 V

50 = 5.0 V

S

S

S

S

S

S

S

S

S

S

S

V

O

GND

TK112xx

+

BANDGAP

REFERENCE

THERMAL

PROTECTION

+

S

NOISE

BYPASS

S

S

S

S

S

S

V

IN

CONTROL

S

S

3

2,5

4

6

1

P50

background image

Page 2

1-3-96

TK112xx

January, 1996  TOKO, Inc.

SYMBOL

PARAMETER

TEST CONDITIONS

MIN

TYP

MAX

UNITS

V

IN

Supply Voltage Range

1.8

15

V

I

IN

Supply Current

I

O

 = 0 mA, Except I

CONT

170

350

µ

A

I

INS

Standby Current

V

IN

 = 8 V, Output off

0.1

µ

A

V

O

Output Voltage

I

= 30 mA

2.66

 2.75

2.84

V

V

DROP

Dropout Voltage

I

= 60 mA

0.18

0.3

V

I

O

Output Current

Note 3

150

170

mA

I

OR

Recommended Output Current

 130

mA

Line Reg

Line Regulation

V

IN

  = 3.25 

 8.25 V

3.0

20

mV

Load Reg

Load Regulation

I

O

 = 5 mA 

→ 

60 mA

30

60

mV

I

O

 = 5 mA 

→ 

100 mA

80

150

mV

RR

Ripple Rejection

100 mV(rms), f = 400 Hz,

60

dB

I

O

 = 10 mA

V

O

/

T

A

Temperature Coefficient

I

O

 = 10 mA

0.15

mV/ 

°

C

-25 

°

 T

A

 

 + 75 

°

C

V

NO

Output Noise Voltage

10 Hz < f < 100 kHz,

30

  

µ

V(rms)

I

O

 = 30 mA, Cp = 0.01 

µ

F

V

REF

Noise Bypass Terminal Voltage

1.25

V

Control Terminal Specification

I

CONT

Control Current

Output on, V

CONT

 = 2.4 V

14

40

µ

A

V

CONT

Control Voltage

Output on

2.4

V

Output off

0.6

V

t

r

Output Rise Time Off 

→ 

On

I

O

 = 30 mA, V

CONT

 = 0 

→ 

2.4 V

0.3

ms

Supply Voltage ......................................................... 16 V

Output Current .................................................... 220 mA

Power Dissipation (Note 1) ................................ 400 mW

Storage Temperature Range ................... -55 to +150 

°

C

Operating Temperature Range ...................-30 to +80 

°

C

Lead Soldering Temp. (10 sec.) ............................ 240 

°

C

Junction Temperature ........................................... 150 

°

C

TK11227 ELECTRICAL CHARACTERISTICS

Test conditions: T

A

 

= 25 

°

C, V

IN

 = 3.8 V, unless otherwise specified.

Note 1:

Power dissipation must be derated at  rate of 1.6 mW/

°

C for operation above 25 

°

C .  Maximum power dissipation = 400 mW

(When mounted as recommended), and 200 mW in free air.

Note 2:

Output side capacitor should have low ESR at low temperatures if used below 0 

°

C.

Note 3:

I

O

 (Output Current) is the measured current when the output voltage drops 0.3 V with respect to V

O

 at I

O

 = 30 mA.

Note  4:

This measurement (pulse measurement) is with a constant T

J

. The output change due to temperature change is not included.

ABSOLUTE MAXIMUM RATINGS

background image

TK112xx

January, 1996  TOKO, Inc.

Page 3

1-3-96

SYMBOL

PARAMETER

TEST CONDITIONS

MIN

TYP

MAX

UNITS

V

IN

Supply Voltage Range

1.8

15

V

I

IN

Supply Current

I

O

 = 0 mA, Except I

CONT

170

350

µ

A

I

INS

Standby Current

V

IN

 = 8 V, Output off

0.1

µ

A

V

O

Output Voltage

I

= 30 mA

2.90

3.00

3.10

V

V

DROP

Dropout Voltage

I

= 60 mA

0.18

0.3

V

I

O

Output Current

Note 3

150

170

mA

I

OR

Recommended Output Current

 130.0

mA

Line Reg

Line Regulation

V

IN

  = 3.5 

 8.5 V

3.0

20

mV

Load Reg

Load Regulation

I

O

 = 5 mA 

→ 

60 mA

30

60

mV

I

O

 = 5 mA 

→ 

100 mA

80

150

mV

RR

Ripple Rejection

100 mV(rms), f = 400 Hz,

60.0

dB

I

O

 = 10

V

O

/

T

A

Temperature Coefficient

I

O

 = 10 mA

0.15

mV/ 

°

C

-25 

°

 T

A

 

 + 75 

°

C

V

NO

Output Noise Voltage

10 Hz < f < 100 kHz,

30

  

µ

V(rms)

I

O

 = 30 mA, Cp = 0.01 

µ

F

V

REF

Noise Bypass Terminal Voltage

1.25

V

Control Terminal Specification

I

CONT

Control Current

Output on, V

CONT

 = 2.4 V

14

40

µ

A

V

CONT

Control Voltage

Output on

2.4

V

Output off

0.6

V

t

r

Output Rise Time Off 

→ 

On

I

O

 = 30 mA, V

CONT

 = 0 

→ 

2.4 V

0.3

ms

Note 1:

Power dissipation must be derated at  rate of 1.6 mW/

°

C for operation above 25 

°

C .  Maximum power dissipation = 400 mW

(When mounted as recommended), and 200 mW in free air.

Note 2:

Output side capacitor should have low ESR at low temperatures if used below 0 

°

C.

Note 3:

I

O

 (Output Current) is the measured current when the output voltage drops 0.3 V with respect to V

O

 at I

O

 = 30 mA.

Note  4:

This measurement (pulse measurement) is with a constant T

J

. The output change due to temperature change is not included.

TK11230 ELECTRICAL CHARACTERISTICS

Test conditions: T

A

 

= 25 

°

C, V

IN

 = 4 V, unless otherwise specified.

background image

Page 4

1-3-96

TK112xx

January, 1996  TOKO, Inc.

SYMBOL

PARAMETER

TEST CONDITIONS

MIN

TYP

MAX

UNITS

V

IN

Supply Voltage Range

1.8

15

V

I

IN

Supply Current

I

O

 = 0 mA, Except I

CONT

170

350

µ

A

I

INS

Standby Current

V

IN

 = 8 V, Output off

0.1

µ

A

V

O

Output Voltage

I

= 30 mA

3.15

3.25

3.35

V

V

DROP

Dropout Voltage

I

= 60 mA

0.18

0.3

V

I

O

Output Current

Note 3

150

170

mA

I

OR

Recommended Output Current

 130

mA

Line Reg

Line Regulation

V

IN

  = 3.75 

 8.75 V

3.0

20

mV

Load Reg

Load Regulation

I

O

 = 5 mA 

→ 

60 mA

30

60

mV

I

O

 = 5 mA 

→ 

100 mA

80

150

mV

RR

Ripple Rejection

100 mV(rms), f = 400 Hz,

60.0

dB

I

O

 = 10 mA

V

O

/

T

A

Temperature Coefficient

I

O

 = 10 mA

0.15

mV/ 

°

C

-25 

°

 T

A

 

 + 75 

°

C

V

NO

Output Noise Voltage

10 Hz < f < 100 kHz,

30

 

µ

V(rms)

I

O

 = 30 mA, Cp = 0.01 

µ

F

V

REF

Noise Bypass Terminal Voltage

1.25

V

Control Terminal Specification

I

CONT

Control Current

Output on, V

CONT

 = 2.4 V

14

40

µ

A

V

CONT

Control Voltage

Output on

2.4

V

Output off

0.6

V

t

r

Output Rise Time Off 

→ 

On

I

O

 = 30 mA, V

CONT

 = 0 

→ 

2.4 V

0.3

ms

TK11232 ELECTRICAL CHARACTERISTICS

Test conditions: T

A

 

= 25 

°

C, V

IN

 = 4.3 V, unless otherwise specified.

Note 1:

Power dissipation must be derated at  rate of 1.6 mW/

°

C for operation above 25 

°

C .  Maximum power dissipation = 400 mW

(When mounted as recommended), and 200 mW in free air.

Note 2:

Output side capacitor should have low ESR at low temperatures if used below 0 

°

C.

Note 3:

I

O

 (Output Current) is the measured current when the output voltage drops 0.3 V with respect to V

O

 at I

O

 = 30 mA.

Note  4:

This measurement (pulse measurement) is with a constant T

J

. The output change due to temperature change is not included.

background image

TK112xx

January, 1996  TOKO, Inc.

Page 5

1-3-96

TK11235 ELECTRICAL CHARACTERISTICS

Test conditions: T

A

 

= 25 

°

C, V

IN

 = 4.5 V, unless otherwise specified.

SYMBOL

PARAMETER

TEST CONDITIONS

MIN

TYP

MAX

UNITS

V

IN

Supply Voltage Range

1.8

15

V

I

IN

Supply Current

I

O

 = 0 mA, Except I

CONT

170

350

µ

A

I

INS

Standby Current

V

IN

 = 8 V, Output off

0.1

µ

A

V

O

Output Voltage

I

= 30 mA

3.39

3.5

3.61

V

V

DROP

Dropout Voltage

I

= 60 mA

0.18

0.3

V

I

O

Output Current

Note 3

150

170

mA

I

OR

Recommended Output Current

 130

mA

Line Reg

Line Regulation

V

IN

  = 4 

→ 

9 V

3.0

20

mV

Load Reg

Load Regulation

I

O

 = 5 mA 

→ 

60 mA

30

60

mV

I

O

 = 5 mA 

→ 

100 mA

80

150

mV

RR

Ripple Rejection

100 mV(rms), f = 400 Hz,

60.0

dB

I

O

 = 10 mA

V

O

/

T

A

Temperature Coefficient

I

O

 = 10 mA

0.15

mV/ 

°

C

-25 

°

 T

A

 

 + 75 

°

C

V

NO

Output Noise Voltage

10 Hz < f < 100 kHz,

35

 

µ

V(rms)

I

O

 = 30 mA, Cp = 0.01 

µ

F

V

REF

Noise Bypass Terminal Voltage

1.25

V

Control Terminal Specification

I

CONT

Control Current

Output on, V

CONT

 = 2.4 V

14

40

µ

A

V

CONT

Control Voltage

Output on

2.4

V

Output off

0.6

V

t

r

Output Rise Time Off 

→ 

On

I

O

 = 30 mA, V

CONT

 = 0 

→ 

2.4 V

0.3

ms

Note 1:

Power dissipation must be derated at  rate of 1.6 mW/

°

C for operation above 25 

°

C.  Maximum power dissipation = 400 mW

(When mounted as recommended), and 200 mW in free air.

Note 2:

Output side capacitor should have low ESR at low temperatures if used below 0 

°

C.

Note 3:

I

O

 (Output Current) is the measured current when the output voltage drops 0.3 V with respect to V

O

 at I

O

 = 30 mA.

Note  4:

This measurement (pulse measurement) is with a constant T

J

. The output change due to temperature change is not included.

background image

Page 6

1-3-96

TK112xx

January, 1996  TOKO, Inc.

TK11240 ELECTRICAL CHARACTERISTICS

Test conditions: T

A

 

= 25 

°

C, V

IN

 = 5 V, unless otherwise specified.

SYMBOL

PARAMETER

TEST CONDITIONS

MIN

TYP

MAX

UNITS

V

IN

Supply Voltage Range

1.8

15

V

I

IN

Supply Current

I

O

 = 0 mA, Except I

CONT

170

350

µ

A

I

INS

Standby Current

V

IN

 = 8 V, Output off

0.1

µ

A

V

O

Output Voltage

I

= 30 mA

3.88

4.0

4.12

V

V

DROP

Dropout Voltage

I

= 60 mA

0.18

0.3

V

I

O

Output Current

Note 3

150

170

mA

I

OR

Recommended Output Current

 130

mA

Line Reg

Line Regulation

V

IN

  = 4.5 

→ 

9.5 V

3.0

20

mV

Load Reg

Load Regulation

I

O

 = 5 mA 

→ 

60 mA

30

60

mV

I

O

 = 5 mA 

→ 

100 mA

80

150

mV

RR

Ripple Rejection

100 mV(rms), f = 400 Hz,

60

dB

I

O

 = 10 mA

V

O

/

T

A

Temperature Coefficient

I

O

 = 10 mA

0.2

mV/ 

°

C

-25 

°

 T

A

 

 + 75 

°

C

V

NO

Output Noise Voltage

10 Hz < f < 100 kHz,

40

  

µ

V(rms)

I

O

 = 30 mA, Cp = 0.01 

µ

F

V

REF

Noise Bypass Terminal Voltage

1.25

V

Control Terminal Specification

I

CONT

Control Current

Output on, V

CONT

 = 2.4 V

14

40

µ

A

V

CONT

Control Voltage

Output on

2.4

V

Output off

0.6

V

t

r

Output Rise Time Off 

→ 

On

I

O

 = 30 mA, V

CONT

 = 0 

→ 

2.4 V

0.3

ms

Note 1:

Power dissipation must be derated at  rate of 1.6 mW/

°

C for operation above 25 

°

C .  Maximum power dissipation = 400 mW

(When mounted as recommended), and 200 mW in free air.

Note 2:

Output side capacitor should have low ESR at low temperatures if used below 0 

°

C.

Note 3:

I

O

 (Output Current) is the measured current when the output voltage drops 0.3 V with respect to V

O

 at I

O

 = 30 mA.

Note  4:

This measurement (pulse measurement) is with a constant T

J

. The output change due to temperature change is not included.

background image

TK112xx

January, 1996  TOKO, Inc.

Page 7

1-3-96

SYMBOL

PARAMETER

TEST CONDITIONS

MIN

TYP

MAX

UNITS

V

IN

Supply Voltage Range

1.8

15

V

I

IN

Supply Current

I

O

 = 0 mA, Except I

CONT

170

350

µ

A

I

INS

Standby Current

V

IN

 = 8 V, Output off

0.1

µ

A

V

O

Output Voltage

I

= 30 mA

4.37

4.5

4.63

V

V

DROP

Dropout Voltage

I

= 60 mA

0.18

0.3

V

I

O

Output Current

Note 3

150

170

mA

I

OR

Recommended Output Current

 130

mA

Line Reg

Line Regulation

V

IN

  = 5 

 10 V

3.0

20

mV

Load Reg

Load Regulation

I

O

 = 5 mA 

→ 

60 mA

30

60

mV

I

O

 = 5 mA 

→ 

100 mA

80

150

mV

RR

Ripple Rejection

100 mV(rms), f = 400 Hz,

60

dB

I

O

 = 10 mA

V

O

/

T

A

Temperature Coefficient

I

O

 = 10 mA

0.25

mV/ 

°

C

-25 

°

 T

A

 

 + 75 

°

C

V

NO

Output Noise Voltage

10 Hz < f < 100 kHz,

45

 

µ

V(rms)

I

O

 = 30 mA, Cp = 0.01 

µ

F

V

REF

Noise Bypass Terminal Voltage

1.25

V

Control Terminal Specification

I

CONT

Control Current

Output on, V

CONT

 = 2.4 V

14

40

µ

A

V

CONT

Control Voltage

Output on

2.4

V

Output off

0.6

V

t

r

Output Rise Time Off 

→ 

On

I

O

 = 30 mA, V

CONT

 = 0 

→ 

2.4 V

0.3

ms

TK11245 ELECTRICAL CHARACTERISTICS

Test conditions: T

A

 

= 25 

°

C, V

IN

 = 5.5 V, unless otherwise specified.

Note 1:

Power dissipation must be derated at  rate of 1.6 mW/

°

C for operation above 25 

°

C .  Maximum power dissipation = 400 mW

(When mounted as recommended), and 200 mW in free air.

Note 2:

 Output side capacitor should have low ESR at low temperatures if used below 0 

°

C.

Note 3:

I

O

 (Output Current) is the measured current when the output voltage drops 0.3 V with respect to V

O

 at I

O

 = 30 mA.

Note  4:

This measurement (pulse measurement) is with a constant T

J

. The output change due to temperature change is not included.

background image

Page 8

1-3-96

TK112xx

January, 1996  TOKO, Inc.

SYMBOL

PARAMETER

TEST CONDITIONS

MIN

TYP

MAX

UNITS

V

IN

Supply Voltage Range

1.8

15

V

I

IN

Supply Current

I

O

 = 0 mA, Except I

CONT

170

350

µ

A

I

INS

Standby Current

V

IN

 = 8 V, Output off

0.1

µ

A

V

O

Output Voltage

I

= 30 mA

4.61

4.75

4.89

V

V

DROP

Dropout Voltage

I

= 60 mA

0.18

0.3

V

I

O

Output Current

Note 3

150

170

mA

I

OR

Recommended Output Current

 130

mA

Line Reg

Line Regulation

V

IN

  = 5.25 

→ 

10.25 V

3.0

20

mV

Load Reg

Load Regulation

I

O

 = 5 mA 

→ 

60 mA

30

60

mV

I

O

 = 5 mA 

→ 

100 mA

80

150

mV

RR

Ripple Rejection

100 mV(rms), f = 400 Hz,

60

dB

I

O

 = 10 mA

V

O

/

T

A

Temperature Coefficient

I

O

 = 10 mA

0.4

mV/ 

°

C

-25 

°

 T

A

 

 + 75 

°

C

V

NO

Output Noise Voltage

10 Hz < f < 100 kHz,

45

  

µ

V(rms)

I

O

 = 30 mA, Cp = 0.01 

µ

F

V

REF

Noise Bypass Terminal Voltage

1.25

V

Control Terminal Specification

I

CONT

Control Current

Output on, V

CONT

 = 2.4 V

14

40

µ

A

V

CONT

Control Voltage

Output on

2.4

V

Output off

0.6

V

t

r

Output Rise Time Off 

→ 

On

I

O

 = 30 mA, V

CONT

 = 0 

→ 

2.4 V

0.3

ms

TK11247 ELECTRICAL CHARACTERISTICS

Test conditions: T

A

 

= 25 

°

C, V

IN

 = 5.7 V, unless otherwise specified.

Note 1:

Power dissipation must be derated at  rate of 1.6 mW/

°

C for operation above 25 

°

C.  Maximum power dissipation = 400 mW

(When mounted as recommended), and 200 mW in free air.

Note 2:

Output side capacitor should have low ESR at low temperatures if used below 0 

°

C.

Note 3:

I

O

 (Output Current) is the measured current when the output voltage drops 0.3 V with respect to V

O

 at I

O

 = 30 mA.

Note  4:

This measurement (pulse measurement) is with a constant T

J

. The output change due to temperature change is not included.

background image

TK112xx

January, 1996  TOKO, Inc.

Page 9

1-3-96

SYMBOL

PARAMETER

TEST CONDITIONS

MIN

TYP

MAX

UNITS

V

IN

Supply Voltage Range

1.8

15

V

I

IN

Supply Current

I

O

 = 0 mA, Except I

CONT

160

350

µ

A

I

INS

Standby Current

V

IN

 = 8 V, Output off

0.1

µ

A

V

O

Output Voltage

I

= 30 mA

4.85

5.0

515

V

V

DROP

Dropout Voltage

I

= 60 mA

0.18

0.3

V

I

O

Output Current

Note 3

150

170

mA

I

OR

Recommended Output Current

 130

mA

Line Reg

Line Regulation

V

IN

  = 5.5 

→ 

10.5 V

3.0

20

mV

Load Reg

Load Regulation

I

O

 = 5 mA 

→ 

60 mA

30

60

mV

I

O

 = 5 mA 

→ 

100 mA

80

150

mV

RR

Ripple Rejection

100 mV(rms), f = 400 Hz,

60

dB

I

O

 = 10 mA

V

O

/

T

A

Temperature Coefficient

I

O

 = 10 mA

0.4

mV/ 

°

C

-25 

°

 T

A

 

 + 75 

°

C

V

NO

Output Noise Voltage

10 Hz < f < 100 kHz,

50

  

µ

V(rms)

I

O

 = 30 mA, Cp = 0.01 

µ

F

V

REF

Noise Bypass Terminal Voltage

1.25

V

Control Terminal Specification

I

CONT

Control Current

Output on, V

CONT

 = 2.4 V

14

40

µ

A

V

CONT

Control Voltage

Output on

2.4

V

Output off

0.6

V

t

r

Output Rise Time Off 

→ 

On

I

O

 = 30 mA, V

CONT

 = 0 

→ 

2.4 V

0.3

ms

TK11250 ELECTRICAL CHARACTERISTICS

Test conditions: T

A

 

= 25 

°

C, V

IN

 = 6 V, unless otherwise specified.

Note 1:

Power dissipation must be derated at  rate of 1.6 mW/

°

C for operation above 25 

°

C.  Maximum power dissipation = 400 mW

(When mounted as recommended), and 200 mW in free air.

Note 2:

Output side capacitor should have low ESR at low temperatures if used below 0 

°

C.

Note 3:

I

O

 (Output Current) is the measured current when the output voltage drops 0.3 V with respect to V

O

 at I

O

 = 30 mA.

Note  4:

This measurement (pulse measurement) is with a constant T

J

. The output change due to temperature change is not included.

background image

Page 10

1-3-96

TK112xx

January, 1996  TOKO, Inc.

TK112XX• TPC01

IO (mA)

V

DROP

 (V)

0

50

100

DROPOUT VOLTAGE vs. 

LOAD CURRENT

0.5

0.4

0.3

0.2

0.1

T  = 25 

°

C

A

0

TK11250

TK112XX • TPC02

IO (mA)

V

O

 (V)

0

100

200

OUTPUT VOLTAGE vs. 

SHORT CIRCUIT CURRENT

T  = 25 

°

C

A

0

1

2

3

4

5

V

IN

 

= V

O

 

+ 1

TK11230

TK11250

TK11220

TEST CIRCUIT

TK112XX • TPC06

LINE TRANSIENT RESPONSE

TA  = 25 

°

C

V

CC

VO

10 mV/DIV

50 

µ

s/DIV

DV = 1 V

TK112XX • TPC04

V     (V)

CC

I CONT

 (pA)

0

QUIESCENT CURRENT vs.

INPUT VOLTAGE

T  = 25 

°

C

A

0

100

200

10

20

TK112XX • TPC05

RIPPLE REJECTION

T   = 25 

°

C

A

100

1k

10k

100k

LEVEL (dB)

0

-50

-100

HZ

TK112XX • TPC03

VCONT (V)

I CONT

 (

µ

A)

0

CONTROL TERMINAL CIRCUIT CURRENT vs. 

CONTROL TERMINAL VOLTAGE

TA= 25 

°

C  

0

10

20

30

40

50

1

2

3

4

5

R

CONT

= 0

RCONT = 0

300 K

75 K

150 K

VO

75 K

150 K

300 K

T

= 25 

°

C unless otherwise specified.

1

4

5

6

2

3

S

V

IN

V

A

A

V

S

S

S

V

O

I

OUT

V

IN

V

OUT

µ

F

10 

µ

F

I

CONT

CONT

CONT

NOTE: CONNECT PINS 2 AND 5 TO

GND FOR MAXIMUM HEAT CONDUCTION.

+

+

_

+

_

.01 

µ

F

Noise Bypass

+

TYPICAL PERFORMANCE CHARACTERISTICS

background image

TK112xx

January, 1996  TOKO, Inc.

Page 11

1-3-96

TK12XX • TPC07

LOAD TRANSIENT RESPONSE

TA = 25 

°

C

I

O

VO

10 mV/DIV

50 

µ

s/DIV

IO = 60 mA

 IO = 0 mA

TK112XX • TPC08

SHUTDOWN CONTROL (OFF-ON)

TA = 25 

°

C

SD

VO

50 

µ

s/DIV

C

L

=10 

µ

F

C

L

=3.3 

µ

F

C

P

=.001

C

P

=.1

C

P

=.01

C

P

=.001

C

P

=.1

C

P

=.01

TK112XX • TPC09

NOISE LEVEL vs.

BYPASS CAPACITOR (pF)

TA  = 25 

°

C

Cp 

1 pF        10 pF     100 pF      .001

µ

F      .01 

µ

F      .1 

µ

F

200

150

100

50

0

NOISE (

µ

V)

TK11250

TK11220

C

= 3.3 

µ

F

C

= 3.3 

µ

F

C

= 10 

µ

F

C

= 10 

µ

F

IO = 60 mA

0

TK112XX • TPC13

CONTROL PIN VOLTAGE (V)

–50

TA (

°

C)

100

0

50

CONTROL PIN VOLTAGE vs.

 TEMPERATURE

2.0

1.0

120

TK112XX • TPC14

OUTPUT CURRENT (mA)

–50

100

0

50

OUTPUT CURRENT vs.

 TEMPERATURE

140

160

180

200

TA (

°

C)

0

2.5

TK112XX • TPC10

5

QUIESCENT CURRENT (mA)

–50

TA (

°

C)

100

VIN = VO +1V

IO = 60 mA

0

50

QUIESCENT CURRENT vs.

 TEMPERATURE

IO = 30 mA

0

TK112XX • TPC11

DROP OUT VOLTAGE (mV)

–50

TA (

°

C)

100

0

50

DROPOUT VOLTAGE vs.

 TEMPERATURE

500

400

300

200

100

IO = 60 mA

IO = 30 mA

0

TK112XX • TPC12

CONTROL PIN CURRENT (

µ

A)

–50

TA (

°

C)

100

0

50

CONTROL PIN CURRENT vs.

 TEMPERATURE

50

40

30

20

10

VCONT = 5 V

VCONT  = 2.4 V

TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)

T

= 25 

°

C unless otherwise specified.

background image

Page 12

1-3-96

TK112xx

January, 1996  TOKO, Inc.

OUTPUT VOLTAGE vs. 

INPUT VOLTAGE

2.25

3.25

VIN (V)

2.75

2.75

V

O

 (V

)

2.25

1.75

IO = 0 mA

60 mA

90 mA

30 mA

227-5

OUTPUT VOLTAGE vs. 

TEMPERATURE

-50

100

TA(°C)

2.70

2.80

0

V

O

 (V)

2.75

50

IO = 30 mA

227-6

60 mA

TK112XX • TPC28

IO (mA)

I Q

 (mA)

0

50

100

5

QUIESCENT CURRENT vs. 

LOAD CURRENT

10

0

VIN = 4.0 V

TA = 25 

°

C

TK112XX• TPC29

VIN (V)

V

(V)

0

10

20

2.6

OUTPUT VOLTAGE vs. 

INPUT VOLTAGE

TA  = 25  

°

C

2.7

2.8

2.9

3.0

3.1

IO = 0 mA

TK11230

TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)

TK11227

QUIESCENT CURRENT vs. 

OUTPUT CURRENT

0

100

IO (mA)

0

10

50

I Q

 (mA)

5

227-2

LOAD REGULATION

0

100

IO (mA)

2.55

2.95

50

V

O

 (V)

2.75

227-1

INPUT CURRENT (NO LOAD) vs.

INPUT VOLTAGE

0

20

VIN (V)

2

10

I IN

 (mA)

1

0

227-4

TK112XX • TPC27

IO (mA)

V

O

 (V)

0

50

100

2.8

3.0

3.2

OUTPUT VOLTAGE vs. 

OUTPUT CURRENT

TA =  25 

°

C

VIN = 3.1 V

OUTPUT VOLTAGE vs. 

INPUT VOLTAGE

0

20

VIN (V)

2.85

10

V

(V)

2.75

2.65

2.55

2.45

2.35

227-3

T

= 25 

°

C unless otherwise specified.

background image

TK112xx

January, 1996  TOKO, Inc.

Page 13

1-3-96

TK11232

TK11230 (CONT.)

TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)

 OUTPUT VOLTAGE vs.  

SUPPLY VOLTAGE 

2.8

3.7

VIN (V)

3.2

3.2

V

(V)

2.4

IO = 0 mA

60 mA

90 mA

30 mA

232-5

3.0

2.8

2.6

INPUT CURRENT (NO LOAD) vs. 

INPUT VOLTAGE

0

20

VIN (V)

2

10

I IN

 (mA)

1

0

232-4

TK112XX • TPC30

VIN (V)

I IN

 (

µ

A)

0

10

20

1

INPUT CURRENT vs. 

INPUT VOLTAGE

2

0

IO  = 0 mA

TA  = 25 

°

C

TK112XX • TPC31

VIN (V)

V

(V)

2.5

3.0

3.5

2.0

2.5

OUTPUT VOLTAGE vs. 

INPUT VOLTAGE

3.0

IO = 0 mA

TA = 25 

°

C

IO = 30 mA

IO = 60 mA

IO = 90 mA

2.95

3.0

TK112XX • TPC32

3.05

V

O

 (V)

–50

TA (

°

C)

80

VIN = 4.0 V

IO = 30 mA

0

50

OUTPUT VOLTAGE vs.

 TEMPERATURE

IO = 60 mA

OUTPUT VOLTAGE vs. 

INPUT VOLTAGE 

0

20

VIN (V)

3.3

10

V

(V)

3.2

3.1

3.0

2.9

232-3

QUIESCENT CURRENT vs. 

OUTPUT CURRENT 

0

100

IO (mA)

0

10

50

I Q

 (mA)

5

232-2

LOAD REGULATION

0

100

IO (mA)

3.0

3.45

50

V

O

 (V)

3.25

232-1

OUTPUT VOLTAGE vs. 

TEMPERATURE

-50

100

TA (°C)

3.20

3.30

0

V

O

 (V)

3.25

50

IO = 30 mA

60 mA

232-6

T

= 25 

°

C unless otherwise specified.

background image

Page 14

1-3-96

TK112xx

January, 1996  TOKO, Inc.

INPUT CURRENT (NO LOAD vs. 

SUPPLY VOLTAGE

0

20

VIN (V)

2

10

I IN

 (mA)

1

0

235-4

OUTPUT VOLTAGE  vs.

INPUT VOLTAGE

3.0

4.0

VIN (V)

3.5

3.5

V

(V

)

2.5

IO = 0 mA

60 mA

90 mA

30 mA

235-5

3.0

LOAD REGULATION

0

100

IO (mA)

3.8

4.2

50

V

O

 (V)

4.0

240-1

QUIESCENT CURRENT vs.  

OUTPUT CURRENT

0

100

IO (mA)

0

10

50

I Q

 (mA)

5

240-2

TK11240

OUTPUT VOLTAGE vs. 

INPUT VOLTAGE 

0

20

VIN (V)

4.1

10

V

(V)

4.0

3.9

3.8

3.7

240-3

3.6

OUTPUT VOLTAGE vs.

TEMPERATURE 

-50

100

TA (°C)

3.45

3.55

0

V

O

 (V)

3.5

50

IO = 30 mA

60 mA

235-6

TK11235

QUIESCENT CURRENT vs. 

OUTPUT CURRENT

0

100

IO (mA)

0

10

50

I Q

 (mA)

5

235-2

LOAD REGULATION

0

100

IO (mA)

3.3

3.7

50

V

O

 (V)

3.5

235-1

OUTPUT VOLTAGE  vs.   

INPUT VOLTAGE

0

20

VIN (V)

3.6

10

V

(V)

3.5

3.4

3.3

3.2

3.1

235-3

TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)

T

= 25 

°

C unless otherwise specified.

background image

TK112xx

January, 1996  TOKO, Inc.

Page 15

1-3-96

OUTPUT VOLTAGE vs.

 INPUT VOLTAGE

0

20

VIN (V)

4.6

10

V

(V)

4.5

4.4

4.3

4.2

245-3

4.1

QUIESCENT CURRENT vs.

OUTPUT CURRENT

0

100

IO (mA)

0

10

50

I Q

 (mA)

5

245-2

INPUT CURRENT (NO LOAD) vs.

INPUT VOLTAGE

0

20

VIN (V)

2

10

I IN

 (mA)

1

0

245-4

OUTPUT VOLTAGE vs.

INPUT VOLTAGE

4.0

5.0

VIN (V)

4.5

4.5

V

(V

)

3.5

IO = 0 mA

60 mA

90 mA

30 mA

245-5

4.0

OUTPUT VOLTAGE vs. 

TEMPERATURE 

-50

100

TA (°C)

4.45

4.55

0

V

O

 (V)

4.5

50

IO = 30 mA

60 mA

245-6

TK11240 (CONT.)

TK11245

SUPPLY VOLTAGE vs. 

INPUT CURRENT (NO LOAD)

0

20

VCC (V)

2

10

I CC

 (mA)

1

0

240-4

SUPPLY VOLTAGE vs. 

OUTPUT VOLTAGE

3.5

4.5

VCC (V)

4.0

4.0

V

(V)

3.0

IO = 0 mA

60 mA

90 mA

30 mA

240-5

3.5

TEMPERATURE vs. 

OUTPUT VOLTAGE

-50

100

TA(°C)

3.95

4.05

0

V

O

 (V)

4.0

50

IO = 30 mA

60 mA

240-6

LOAD REGULATION

0

100

IO (mA)

4.3

4.7

50

V

O

 (V)

4.5

245-1

TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)

T

= 25 

°

C unless otherwise specified.

background image

Page 16

1-3-96

TK112xx

January, 1996  TOKO, Inc.

TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)

TK11250

INPUT CURRENT (NO LOAD) vs.

INPUT VOLTAGE 

0

20

VIN (V)

2

10

I IN

 (mA)

1

0

247-4

OUTPUT VOLTAGE vs. 

 INPUT VOLTAGE

4.25

5.25

VIN (V)

4.75

4.75

V

(V

)

3.75

60 mA

90 mA

30 mA

247-5

4.25

IO = 0 mA

OUTPUT VOLTAGE  vs .

TEMPERATURE

-50

100

TA (°C)

4.70

4.80

0

V

O

 (V)

4.75

50

IO = 30 mA

60 mA

247-6

TK112XX • TPC33

IO (mA)

V

O

 (V)

0

50

100

4.8

5.0

5.2

OUTPUT VOLTAGE vs. 

OUTPUT CURRENT

TA = 25 

°

C

VIN = 6.0 V

TK112XX • TPC34

IO (mA)

I Q

 (mA)

0

50

100

5

QUIESCENT CURRENT vs. 

LOAD CURRENT

10

0

VIN = 6.0 V 

TA = 25 

°

C

QUIESCENT CURRENT vs. 

OUTPUT CURRENT

0

100

IO (mA)

0

10

50

I Q

 (mA)

5

247-2

OUTPUT VOLTAGEvs.  

SUPPLY VOLTAGE

0

20

VIN (V)

4.85

10

V

(V)

4.75

4.65

4.55

4.45

247-3

4.35

TK11247

TK112XX• TPC35

VIN (V)

V

O

 (V)

0

10

20

4.6

OUTPUT VOLTAGE vs. 

INPUT VOLTAGE

I   = 0 mA

O

TA  = 25 

°

 C

4.7

4.8

4.9

5.0

5.1

LOAD REGULATION

0

100

IO (mA)

4.55

4.95

50

V

O

 (V)

4.75

247-1

T

= 25 

°

C unless otherwise specified.

background image

TK112xx

January, 1996  TOKO, Inc.

Page 17

1-3-96

TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)

TK11250 (CONT.)

4.95

5.0

TK112XX • TPC38

5.05

V

O

 (V)

–50

T   (  C)

°

A

80

VIN = 6.0 V

IO = 30 mA

0

50

OUTPUT VOLTAGE vs.

 TEMPERATURE

IO = 60 mA

TK112XX • TPC37

VIN ( V)

V

O

 (V)

4.5

5.0

5.5

4.0

4.5

OUTPUT VOLTAGE vs. 

INPUT VOLTAGE

5.0

IO = 0 mA

TA  = 25 

°

C

IO = 30 mA

IO = 60 mA

IO = 90 mA

TK112XX • TPC36

VIN (V)

I IN

 (

µ

A)

0

10

20

1

INPUT CURRENT vs. 

INPUT VOLTAGE

2

0

TA = 25 

°

C

IO = 0 mA

DEFINITION AND EXPLANATION OF TECHNICAL TERMS

LINE REGULATION (LINE REG)

Line regulation is the relationship between change in

output voltage due to a change in input voltage.

LOAD REGULATION (LOAD REG)

Load regulation is the relationship between change in

output voltage due to a change in load current.

DROP OUT VOLTAGE (V

DROP

)

This is a measure of  how well the regulator performs as the

input voltage decreases. The smaller the number, the

further the input voltage can decrease before regulation

problems occur.  Nominal output voltage is  first measured

when V

IN

 = V

O

 + 1 at  a chosen load current. When the

output voltage has dropped 100 mV from the nominal, V

IN

- V

O

 is the dropout voltage. This voltage is affected by load

current and junction temperature.

OUTPUT NOISE VOLTAGE

This is the effective AC voltage that occurs on the output

voltage under the condition where the input noise is low and

with a given load, filter capacitor, and frequency range.

THERMAL PROTECTION

This is an internal feature which turns the regulator off when

the junction temperature rises above 150 

°

C.  After the

regulator turns off, the temperature drops and the regulator

output turns back on.  Under certain conditions, the output

waveform may appear to be an oscillation as the output

turns off and on and back again in succession.

PACKAGE POWER DISSIPATION (P

D

)

This is the power dissipation level at which the thermal

sensor is activated.  The IC contains an internal thermal

sensor which monitors the junction temperature.  When the

junction temperature exceeds the monitor threshold of

150

°

C, the IC is shutdown.  The junction temperature rises

as the difference between the input power (V

IN

 X I

IN

) and

the output power (V

O

 X I

O

) increases.  The rate of tempera-

ture rise is greatly affected by the mounting pad configura-

tion on the PCB, the board material, and the ambient

temperature.  When the IC mounting has good thermal

conductivity, the junction temperature will be low even if the

power dissipation is great.  When mounted onthe recom-

mended mounting pad, the power dissipation of the SOT-

23L is increased to 400 mW.  For operation at ambient

temperatures over 25 

°

C, the power dissipation of the SOT-

23L device should be derated at 3.2 mW/

°

C.   To determine

the power dissipation for shutdown when mounted, attach

the device on the actual PCB and deliberately increase the

output current (or raise the input voltage) until the thermal

protection circuit is activated.  Calculate the power dissipa-

tion of the device by subtracting the output power from the

input power.  These measurements should allow for the

ambient temperature of the PCB.  The value obtained from

PD/(150 

°

C - T

A

) is the derating factor.  The PCB mounting

pad should provide maximum thermal conductivity in order

to maintain low device temperatures.  As a general rule, the

T

= 25 

°

C unless otherwise specified.

background image

Page 18

1-3-96

TK112xx

January, 1996  TOKO, Inc.

lower the temperature, the better the reliability of the

device.  The Thermal resistance when mounted is ex-

pressed as follows:

T

J

 = 0

JA

 X P

D

 + T

A

For Toko ICs, the internal limit for junction temperature is

150 

°

C.  If the ambient temperature, T

A

  is 25 

°

C, then:

150 

°

C = 0

JA

 X P

D

 + 25 

°

C

0

JA

 X P

D

 = 125 

°

C

0

JA

 = 125 

°

C/ P

D

P

D

 is the value when the thermal sensor is activated.  A

simple way to determine PD is to calculate V

IN

 X I

IN

 when

the output side is shorted.  Input current gradually falls as

temperature rises.  You should use the value when thermal

equilibrium is reached.

The range of currents usable can also be found from the

graph below.

PD

Dpd

25

50

75

150

(mW)

T (°C)

3

6

5

4

Procedure:

1.)

Find P

D

2.)

P

D1

 is taken to be P

D

 X (

0.8 ~ 0.9)

3.)

Plot P

D1

 against 25 

°

C

4.)

Connect P

D1 

 to the point corresponding to the

150

°

C with a straight line.

5.)

In design, take a vertical line from the maximum

operating temperature (e.g. 75 

°

C) to the derating

curve.

6.)

Read off the value of P

D

 against the point at which

the vertical line intersects the derating curve.  This

is taken as the maximum power dissipation, D

PD

.

The maximum operating current is I

O

  X (D

PD

/(V

IN(MAX) 

-

V

O

).

DEFINITION AND EXPLANATION OF TECHNICAL TERMS (CONT.)

INPUT/OUTPUT DECOUPLING CAPACITOR CONSIDER-

ATIONS

Voltage regulators require input and output decoupling

capacitors.  The required value of these capacitors vary

with application.  Capacitors made by different manufactur-

ers can have different characteristics, particularly with

regard to high frequencies and equivalent resistance (ESR)

over temperature.  The type of capacitor is also important.

For example, a 5.6 

µ

F aluminum electrolytic may be re-

quired for a certain application.  If a tantalum capacitor is

used, a lower value of 3.3 

µ

F would be adequate.  It is

important to consider the temperature characteristics of the

decoupling capacitors.  While Toko regulators are de-

signed to operate as low as -30 

°

C, many capacitors will not

operate properly at this temperature.  The capacitance of

aluminum electrolytic capacitors may decrease to 0 at low

temperatures.  This may cause oscillation on the output of

the regulator since some capacitance is required to guar-

antee stability.  Thus, it is important to consider the charac-

teristics of the capacitor over temperature when selection

decoupling capacitors.  The ESR is another important

parameter.  The ESR will increase with temperature but low

ESR capacitors are often larger and more costly.  In

general, Tantalum capacitors offer lower ESR than alumi-

num electrolytic, but new low ESR aluminum electrolytic

capacitors are now available from several manufacturers.

Usually a bench test is sufficient to determine the minimum

capacitance required for a particular application. After

taking thermal characteristics and tolerance into account,

the minimum capacitance value should be approximately

two times this value.  The recommended minimum capaci-

tance for the TK112xx is 3.3 

µ

F.  Please note that linear

regulators with a low dropout voltage have high internal

loop gains which requires care in guarding against oscilla-

tion caused by insufficient decoupling capacitance.  The

use of high quality decoupling capacitors suited for your

application will guarantee proper operation of the circuit.

NOISE BYPASS CAPACITOR SECTION

The noise bypass capacitor (C

P

) should be connected as

close as possible to pin 3 and ground.  The recommended

value for C

P

 is 0.01 

µ

F.  The noise bypass terminal has a

high impedance and care should be taken if the noise

bypass capacitor is not used.  This terminal is susceptible

to external noise and oscillation can occur when C

P

 is not

used and the solder pad for this pin is made too large.

background image

TK112xx

January, 1996  TOKO, Inc.

Page 19

1-3-96

1.) Disabling the control pin

Connect control terminal to V

IN

 through a resistor (R).

Higher resistance values are  good for reducing quiescent

current but this can cause the regulator to shut down at

lower input voltages. See Figure A.

+

1 µF

R

+

10 µF

V

O

V

IN

C

P

 = 10 nF

1

2

3

6

5

4

Figure A

2.) Using the control function

Turn on the regulator by setting the control pin voltage  to

2.4 V or higher. Turn off  the regulator by pulling the control

pin below 0.6 V.  The regulator can also be controlled

directly from a TTL or CMOS device.  See  Figure B.

+

µF

+

10 µF

V

O

V

IN

C

P

 = 10 nF

1

3

6

2

5

4

R

Figure B

3.) Microprocessor/Logic Control

112XX

Cont

+

VO

GND

+

VIN

Microprocessor

The Input and Control current in the off mode are less than

200 pA.

APPLICATION INFORMATION

 

 R 

 300 k

4.) Parallel connection for ON/OFF control

11250

V

IN

Cont

V

O

GND

11230

V

IN

Cont

V

O

GND

11220

V

IN

Cont

V

O

GND

+

+

+

5 V

3 V

2 V

+

+

RS

On/Off

0.1 µF

0.1 µF

V

IN

To reduce IC power dissipation, connect a resistor, R

S

, in

series with V

IN 

for the lower output voltage devices.  This

will prevent thermal shutdown due to excessive power

dissipation.

5.) Constant current load

112XX

Cont

+

VO

GND

+

VIN

+

R

ON/OFF

When there is a large ouput current, the quiescent current

also increases, and the difference becomes larger.  When

using the ON/OFF control, the terminal voltage should be

set 2.4 V higher than the GND terminal of the IC.  When the

ON/OFF control is not being used, connect it to V

IN

.

background image

Page 20

1-3-96

TK112xx

January, 1996  TOKO, Inc.

APPLICATION INFORMATION (CONT.)

6.) Heat dissipation

Make the copper pattern as large as possible to provide

good heat dissipation (pin 5 is the heatsink).

Maximum power dissipation = 400 mW (When mounted as

recommended) See Figure C.

+

+

GND

Figure C

7.) Handling molded resin packages

All plastic molded packages absorb some moisture from

the air. If moisture absorption occurs prior to soldering the

devise into the printed circuit board, increased separation

of the lead from the plastic molding may occur, degrading

the moisture barrier characteristics of the device. This

property of plastic molding compounds should not be

overlooked, particularly in the case of very small packages,

where the plastic is very thin. In order to preserve the

original moisture barrier properties of the package, devices

are stored and shipped in moisture proof bags, filled with

dry air. The bags should not be opened or damaged prior

to the actual use of the devices. If this is unavoidable, the

devices should be stored in a low relative humidity environ-

ment (40 to 65%) or in an enclosed environment with

desiccant.

background image

TK112xx

January, 1996  TOKO, Inc.

Page 21

1-3-96

Marking Information

11227

P2

11230

P3

11232

P

3

11235

P

3

11240

P4

11245

P

4

11247

P4

11250

P5

© 1993 Toko America, Inc.

      All Rights Reserved

Printed in U.S.A.

IC-114-TK112

PACKAGE OUTLINE

The information furnished by TOKO, Inc. is believed to be accurate and reliable.  However, TOKO reserves the right to make changes or improvements in the design, specification or manufacture of its products without further notice. TOKO

does not assume any liability arising from the application or use of any product or circuit described herein, nor for any infringements of patents or other rights of third parties which may result from the use of its products.  No license is granted

by implication or otherwise under any patent or patent rights of TOKO, Inc.

YOUR LOCAL REPRESENTATIVE IS:

TOKO America, Inc.

1250 Feehanville Dr.

Mt. Prospect, ILL   60056

Tel: 1(800) PIK-TOKO

Fax: 1(847) 699-1194

(Pin 2 and pin 5 should be

grounded for heat dissipation)

0.95

0.95

0.4

e

e

0.1

M

3.4

1.25

1.2

0.05

0.15

0.3

3.3

2.2

0.4

+0.1

-0.05

± 0.2

±

0.2

± 0.2

±

0.05

± 0.3

+0.1

-0.05

0.95

0.95

3.2

e

e

e

1

0.6

1.0

±0.15

+0.15

- 0

Unit:mm

Recommended Mount Pad

1

2

3

4

5

6

30°  Max

Orientation Mark 

Marking 

Information 

SOT23L