background image

December 1999 TOKO, Inc.

Page 1

TK716xx

FEATURES

s

Available in 

±

 2.0 % or 

±

 1.0 % Output Tolerance

s

Active High On/Off Control

s

Very Low Quiescent Current

s

Very Low Dropout Voltage

s

Reverse Bias Protection

s

Miniature Package (SOT23-5)

s

Short Circuit Switch

s

High Ripple Rejection

s

Very High Output Impedance (Output Off)

s

Very Low Noise

BLOCK DIAGRAM

TK716xx

20P

GND

VIN

NOISE

 BYPASS

VOUT

CONTROL

CONTROL

GND

VIN

VOUT

BANDGAP

REFERENCE

CONSTANT

CURRENT

SOURCE

THERMAL AND

OVERCURRENT

PROTECTION

DISCONNECT

CIRCUIT

NOISE

BYPASS

+

-

CONTROL

CIRCUIT

TK716        SCL

TK716        S I L

TK716        SCL H

ORDERING INFORMATION

TAPE/REEL CODE

L: Tape Left

TEMPERATURE CODE

C: Standard Temp. Range

 I:  Extended Temp. Range

PACKAGE CODE

S: SOT23-5

TOLERANCE CODE

H: 1 % Output Voltage Tolerance

     (Not available in I temp code)

CAPACITOR CODE

None:  Ceramic Capacitor

A:  Tantalum Capacitor

Tape/Reel Code

Voltage Code

Temp. Code

Package Code

VOLTAGE CODE*

13 = 1.3 V

14 = 1.4 V

15 = 1.5 V

16 = 1.6 V

17 = 1.7 V

18 = 1.8 V

19 = 1.9 V

20 = 2.0 V

21 = 2.1 V

22 = 2.2 V

23 = 2.3 V

24 = 2.4 V

25 = 2.5 V

26 = 2.6 V

Tolerance Code

Capacitor Code

27 = 2.7 V

28 = 2.8 V

29 = 2.9 V

30 = 3.0 V

31 = 3.1 V

32 = 3.2 V

33 = 3.3 V

34 = 3.4 V

35 = 3.5 V

36 = 3.6 V

37 = 3.7 V

38 = 3.8 V

39 = 3.9 V

40 = 4.0 V

41 = 4.1 V

42 = 4.2 V

43 = 4.3 V

44 = 4.4 V

45 = 4.5 V

46 = 4.6 V

47 = 4.7 V

48 = 4.8 V

49 = 4.9 V

50 = 5.0 V

51 = 5.1 V

52 = 5.2 V

53 = 5.3 V

54 = 5.4 V

*Check Table 4

  for availability.

DESCRIPTION

The TK716xx is a low dropout linear regulator housed in a

small SOT23-5 package, rated at 500 mW. The phase

compensation in the IC has been optimized to allow the

use of ceramic or tantalum output capacitors.  The device

is in the “on” state when the control pin is pulled to a logic

high level. An internal PNP pass transistor is used to

achieve a low dropout voltage of  90 mV (typ.) at 50 mA

load current. This device offers high precision output

voltage of 

±

 2.0 % or 

±

 1.0 %. The low quiescent current

and dropout voltage make this part ideal for battery pow-

ered applications. This part incorporates an output discon-

nect feature to reduce the reverse bias current in the “off”

state to less than 50 nA.

APPLICATIONS

s

Battery Powered Systems

s

Cellular Telephones

s

Pagers

s

Personal Communications Equipment

s

Portable Instrumentation

s

Portable Consumer Equipment

s

Radio Control Systems

s

Toys

s

Low Voltage Systems

LOW DROPOUT VOLTAGE REGULATOR

The internal reverse bias protection eliminates the require-

ment for a reverse voltage protection diode, saving cost

and board space. The high 60 dB ripple rejection (400 Hz)

and low noise provide enhanced performance for critical

applications. An external capacitor can be connected to

the noise bypass pin to lower the output noise level to 30

µ

Vrms.

background image

Page 2

December 1999 TOKO, Inc.

TK716xx

ABSOLUTE MAXIMUM RATINGS

Supply Voltage ......................................................... 16 V

Power Dissipation (Note 1) ................................ 500 mW

Reverse Bias Voltage ................................................. 6 V

Control Terminal Voltage ......................................... 12 V

Noise Bypass Terminal Voltage ................................. 5 V

Operating Voltage Range ............................... 1.8 to 12 V

Storage Temperature Range ................... -55 to +150 

°

C

Operating Temperature (Ambient) Range

    TK716xx  SCL, TK716xx  SCLH ............ -30 to +80 

°

C

    TK716xx  SIL .......................................... -40 to +85 

°

C

Junction Temperature (Operating) ........................ 125 

°

C

Junction Temperature (Shutdown) ........................ 150 

°

C

Lead Soldering Temperature (10 s) ...................... 235 

°

C

TK716xx  SCL AND TK716xx  SCLH ELECTRICAL CHARACTERISTICS

Test conditions: V

IN

 = V

OUT(TYP)

 + 1 V, T

= 25 

°

C, unless otherwise specified.

Note 1:  Power dissipation is 500 mW when mounted as recommended. Derate at 4.0 mW/

°

C for operation above 25 

°

C.

Gen Note:  Exceeding the “Absolute Maximum Ratings” may damage the device.

Gen Note:  Parameters with min. or max. values are 100% tested at T

A

 = 25 

°

C.

Gen Note:  

Ripple rejection is @ 60 dB when f = 400 Hz, C

L

 = 10 

µ

F, C

N

 = 0.1 

µ

F, input noise = 100 mVrms, V

IN

 = V

OUT(TYP)

 + 1.5 V and I

OUT

 = 30 mA.

Gen Note:  Output noise is 0.13 ~ 0.23 

µ

V/    Hz at 1 kHz when C

N

 = 0.1 

µ

F.

L

O

B

M

Y

S

R

E

T

E

M

A

R

A

P

S

N

O

I

T

I

D

N

O

C

T

S

E

T

N

I

M

P

Y

T

X

A

M

S

T

I

N

U

I

Q

t

n

e

r

r

u

C

t

n

e

c

s

e

i

u

Q

I

T

U

O

I

g

n

i

d

u

l

c

x

E

,

A

m

0

=

T

N

O

C

0

7

0

0

1

A

µ

I

Y

B

T

S

t

n

e

r

r

u

C

y

b

d

n

a

t

S

V

N

I

,

V

8

=

V

(

F

F

O

t

u

p

t

u

O

T

N

O

C

)

V

5

1

.

0

1

.

0

A

µ

I

V

E

R

t

n

e

r

r

u

C

s

a

i

B

e

s

r

e

v

e

R

V

N

I

,

V

0

=

V

V

E

R

F

F

O

t

u

p

t

u

O

,

V

5

=

1

0

5

A

n

I

D

N

G

t

n

e

r

r

u

C

n

i

P

D

N

G

I

T

U

O

A

m

0

5

=

1

8

.

1

A

m

I

T

U

O

t

n

e

r

r

u

C

t

u

p

t

u

O

s

u

o

u

n

i

t

n

o

C

0

5

1

A

m

I

)

E

S

L

U

P

(

T

U

O

t

n

e

r

r

u

C

t

u

p

t

u

O

e

s

l

u

P

%

0

4

=

e

l

c

y

C

y

t

u

D

,

e

s

l

u

p

s

m

0

1

0

0

2

A

m

V

T

U

O

e

g

a

t

l

o

V

t

u

p

t

u

O

V

N

I

V

=

)

P

Y

T

(

T

U

O

,

V

1

+

I

T

U

O

A

m

5

=

2

d

n

a

1

e

l

b

a

T

e

e

S

V

V

T

U

O

/

T

e

r

u

t

a

r

e

p

m

e

T

t

n

e

i

c

i

f

f

e

o

C

0

2

C

°

/

m

p

p

g

e

R

e

n

i

L

n

o

i

t

a

l

u

g

e

R

e

n

i

L

V

N

I

V

=

)

P

Y

T

(

T

U

O

V

o

t

V

1

+

)

P

Y

T

(

T

U

O

V

6

+

2

5

1

V

m

g

e

R

d

a

o

L

n

o

i

t

a

l

u

g

e

R

d

a

o

L

I

<

A

m

1

T

U

O

A

m

0

5

<

4

8

1

V

m

I

<

A

m

1

T

U

O

A

m

0

0

1

<

7

8

2

V

m

I

<

A

m

1

T

U

O

A

m

0

5

1

<

2

1

0

5

V

m

V

P

O

R

D

e

g

a

t

l

o

V

t

u

o

p

o

r

D

I

T

U

O

A

m

0

5

=

0

9

0

6

1

V

m

I

T

U

O

A

m

0

0

1

=

0

4

1

0

3

2

V

m

I

T

U

O

A

m

0

5

1

=

V

T

U

O

V

4

.

2

0

0

2

0

0

3

V

m

V

T

U

O

V

4

.

2

<

0

0

2

0

5

3

V

m

V

f

e

r

l

a

n

i

m

r

e

T

s

s

a

p

y

B

e

s

i

o

N

e

g

a

t

l

o

V

6

2

.

1

V

S

N

O

I

T

A

C

I

F

I

C

E

P

S

L

A

N

I

M

R

E

T

L

O

R

T

N

O

C

I

T

N

O

C

t

n

e

r

r

u

C

l

o

r

t

n

o

C

V

T

U

O

,

V

6

.

1

=

N

O

t

u

p

t

u

O

0

1

A

µ

V

)

N

O

(

T

N

O

C

N

O

e

g

a

t

l

o

V

l

o

r

t

n

o

C

N

O

t

u

p

t

u

O

6

.

1

V

V

)

F

F

O

(

T

N

O

C

F

F

O

e

g

a

t

l

o

V

l

o

r

t

n

o

C

F

F

O

t

u

p

t

u

O

6

.

0

V

background image

December 1999 TOKO, Inc.

Page 3

TK716xx

TK716xx  SCL ELECTRICAL CHARACTERISTICS TABLE 1

Test Conditions: V

IN

 = V

OUT(TYP) 

+ 1 V, I

OUT

 = 5 mA, T

A

 = 25 

°

C, unless otherwise specified.

TK716xx  SCLH ELECTRICAL CHARACTERISTICS TABLE 2

Test Conditions: V

IN

 = V

OUT(TYP) 

+ 1 V, I

OUT

 = 5 mA, T

A

 = 25 

°

C, unless otherwise specified.

Output

Voltage

V

OUT(MIN)

V

OUT(MAX)

Voltage

Code

1.3 V

13

1.240 V

1.360 V

1.4 V

14

1.340 V

1.460 V

1.5 V

15

1.440 V

1.560 V

1.6 V

16

1.540 V

1.660 V

1.7 V

17

1.650 V

1.760 V

1.8 V

18

1.740 V

1.860 V

1.9 V

19

1.870 V

1.960 V

2.0 V

20

1.940 V

2.060 V

2.1 V

21

2.040 V

2.160 V

2.2 V

22

2.140 V

2.260 V

2.3 V

23

2.240 V

2.360 V

2.4 V

24

2.340 V

2.460 V

2.5 V

25

2.440 V

2.560 V

2.6 V

26

2.540 V

2.660 V

2.7 V

27

2.640 V

2.760 V

2.8 V

28

2.740 V

2.860 V

2.9 V

29

2.840 V

2.960 V

3.0 V

30

2.940 V

3.060 V

3.1 V

31

3.038 V

3.162 V

3.2 V

32

3.136 V

3.264 V

3.3 V

33

3.234 V

3.366 V

Output

Voltage

V

OUT(MIN)

V

OUT(MAX)

Voltage

Code

3.8 V

38

3.760 V

3.840 V

3.9 V

39

3.860 V

3.940 V

4.0 V

40

3.960 V

4.040 V

4.1 V

41

4.059 V

4.141 V

4.2 V

42

4.158 V

4.242 V

4.3 V

43

4.247 V

4.343 V

4.4 V

44

4.356 V

4.444 V

4.5 V

45

4.455 V

4.545 V

4.6 V

46

4.554 V

4.646 V

4.7 V

47

4.653 V

4.747 V

4.8 V

48

4.752 V

4.848 V

4.9 V

49

4.851 V

4.949 V

5.0 V

50

4.950 V

5.050 V

5.1 V

51

5.049 V

5.151 V

5.2 V

52

5.148 V

5.252 V

5.3 V

53

5.247 V

5.353 V

5.4 V

54

5.346 V

5.454 V

Output

Voltage

V

OUT(MIN)

V

OUT(MAX)

Voltage

Code

3.4 V

34

3.232 V

3.468 V

3.5 V

35

 3.430 V

 3.570 V

3.6 V

36

3.528 V

3.672 V

3.7 V

37

3.626 V

3.774 V

3.8 V

38

3.724 V

3.876 V

3.9 V

39

3.822 V

3.978 V

4.0 V

40

3.920 V

4.080 V

4.1 V

41

4.018 V

4.182 V

4.2 V

42

4.116 V

4.284 V

4.3 V

43

4.214 V

4.386 V

4.4 V

44

4.312 V

4.488 V

4.5 V

45

4.410 V

4.590 V

4.6 V

46

4.508 V

4.692 V

4.7 V

47

4.606 V

4.794 V

4.8 V

48

4.704 V

4.896 V

4.9 V

49

4.802 V

5.008 V

5.0 V

50

4.900 V

5.100 V

5.1 V

51

4.998 V

5.202 V

5.2 V

52

5.096 V

5.304 V

5.3 V

53

5.194 V

5.406 V

5.4 V

54

5.292 V

5.508 V

Output

Voltage

V

OUT(MIN)

V

OUT(MAX)

Voltage

Code

2.0 V

20

  1.960 V

  2.040 V

2.1 V

21

2.060 V

2.140 V

2.2 V

22

2.160 V

2.240 V

2.3 V

23

2.260 V

2.340 V

2.4 V

24

2.360 V

2.440 V

2.5 V

25

2.460 V

2.540 V

2.6 V

26

2.560 V

2.640 V

2.7 V

27

2.660 V

2.740 V

2.8 V

28

2.760 V

2.840 V

2.9 V

29

2.860 V

2.940 V

3.0 V

30

2.960 V

3.040 V

3.1 V

31

3.060 V

3.140 V

3.2 V

32

3.160 V

3.240 V

3.3 V

33

3.260 V

3.340 V

3.4 V

34

3.360 V

3.440 V

3.5 V

35

3.460 V

3.540 V

3.6 V

36

3.560 V

3.640 V

3.7 V

37

3.660 V

3.740 V

background image

Page 4

December 1999 TOKO, Inc.

TK716xx

TK716xx  SIL ELECTRICAL CHARACTERISTICS

Test conditions: V

IN

 = V

OUT(TYP)

 + 1 V, T

= 25 

°

C, unless otherwise specified.

Gen Note: Exceeding the “Absolute Maximum Ratings” may damage the device.

Gen Note: Parameters with min. or max. values are 100% tested at T

A

 = 25 

°

C.

Gen Note: 

Ripple rejection is @ 60 dB when f = 400 Hz, C

L

 = 10 

µ

F, C

N

 = 0.1 

µ

F, input noise = 100 mVrms, V

IN

 = V

OUT(TYP)

 + 1.5 V and I

OUT

 = 30 mA.

Gen Note: Output noise is 0.13 ~ 0.23 

µ

V/    Hz at 1 kHz when C

N

 = 0.1 

µ

F.

L

O

B

M

Y

S

R

E

T

E

M

A

R

A

P

S

N

O

I

T

I

D

N

O

C

T

S

E

T

N

I

M

P

Y

T

X

A

M

S

T

I

N

U

I

Q

t

n

e

r

r

u

C

t

n

e

c

s

e

i

u

Q

I

T

U

O

I

g

n

i

d

u

l

c

x

E

,

A

m

0

=

T

N

O

C

0

7

0

0

1

A

µ

I

Y

B

T

S

t

n

e

r

r

u

C

y

b

d

n

a

t

S

V

N

I

,

V

8

=

F

F

O

t

u

p

t

u

O

2

.

0

A

µ

I

V

E

R

t

n

e

r

r

u

C

s

a

i

B

e

s

r

e

v

e

R

V

N

I

,

V

0

=

V

V

E

R

F

F

O

t

u

p

t

u

O

,

V

5

=

1

0

7

A

n

I

D

N

G

t

n

e

r

r

u

C

n

i

P

D

N

G

I

T

U

O

A

m

0

5

=

1

0

.

2

A

m

I

T

U

O

t

n

e

r

r

u

C

t

u

p

t

u

O

s

u

o

u

n

i

t

n

o

C

0

5

1

A

m

I

)

E

S

L

U

P

(

T

U

O

t

n

e

r

r

u

C

t

u

p

t

u

O

e

s

l

u

P

%

0

4

=

e

l

c

y

C

y

t

u

D

,

e

s

l

u

p

s

m

0

1

0

0

2

A

m

V

T

U

O

e

g

a

t

l

o

V

t

u

p

t

u

O

V

N

I

V

=

)

P

Y

T

(

T

U

O

,

V

1

+

I

T

U

O

A

m

5

=

3

e

l

b

a

T

e

e

S

V

V

T

U

O

/

T

e

r

u

t

a

r

e

p

m

e

T

t

n

e

i

c

i

f

f

e

o

C

0

2

C

°

/

m

p

p

g

e

R

e

n

i

L

n

o

i

t

a

l

u

g

e

R

e

n

i

L

V

N

I

V

=

)

P

Y

T

(

T

U

O

o

t

V

1

+

V

)

P

Y

T

(

T

U

O

V

6

+

2

7

1

V

m

g

e

R

d

a

o

L

n

o

i

t

a

l

u

g

e

R

d

a

o

L

I

<

A

m

1

T

U

O

A

m

0

5

<

4

0

2

V

m

I

<

A

m

1

T

U

O

A

m

0

0

1

<

7

0

3

V

m

V

P

O

R

D

e

g

a

t

l

o

V

t

u

o

p

o

r

D

I

T

U

O

A

m

0

5

=

0

9

0

6

1

V

m

I

T

U

O

A

m

0

0

1

=

0

5

1

0

4

2

V

m

I

T

U

O

A

m

0

5

1

=

0

0

2

0

1

3

V

m

V

f

e

r

e

g

a

t

l

o

V

l

a

n

i

m

r

e

T

s

s

a

p

y

B

e

s

i

o

N

6

2

.

1

V

S

N

O

I

T

A

C

I

F

I

C

E

P

S

L

A

N

I

M

R

E

T

L

O

R

T

N

O

C

I

T

N

O

C

t

n

e

r

r

u

C

l

o

r

t

n

o

C

V

T

U

O

,

V

6

.

1

=

N

O

t

u

p

t

u

O

0

1

A

µ

V

)

N

O

(

T

N

O

C

N

O

e

g

a

t

l

o

V

l

o

r

t

n

o

C

N

O

t

u

p

t

u

O

8

.

1

V

V

)

F

F

O

(

T

N

O

C

F

F

O

e

g

a

t

l

o

V

l

o

r

t

n

o

C

F

F

O

t

u

p

t

u

O

4

.

0

V

background image

December 1999 TOKO, Inc.

Page 5

TK716xx

TK716xx  SIL ELECTRICAL CHARACTERISTICS TABLE 3

Test Conditions: V

IN

 = V

OUT(TYP) 

+ 1 V, I

OUT

 = 5 mA, T

A

 = 25 

°

C, unless otherwise specified.

                                     Room Temp. Range (T

A

 = 25 

°

C)                  Full Temp. Range (T

A

 = -40 to +85 

°

C)

Output

Voltage

V

OUT(MIN)

V

OUT(MAX)

V

OUT(MIN)

V

OUT(MAX)

Voltage

Code

2.4 V

24

2.360 V

2.440 V

2.320 V

2.480 V

2.5 V

25

2.460 V

2.540 V

2.420 V

2.580 V

2.6 V

26

2.560 V

2.640 V

2.520 V

2.680 V

2.7 V

27

2.660 V

2.740 V

2.620 V

2.780 V

2.8 V

28

2.760 V

2.840 V

2.720 V

2.880 V

2.9 V

29

2.860 V

2.940 V

2.820 V

2.980 V

3.0 V

30

2.960 V

3.040 V

3.920 V

3.080 V

3.1 V

31

3.060 V

3.140 V

3.020 V

3.180 V

3.2 V

32

3.160 V

3.240 V

3.120 V

3.280 V

3.3 V

33

3.260 V

3.340 V

3.220 V

3.380 V

3.4 V

34

3.360 V

3.440 V

3.320 V

3.480 V

3.5 V

35

3.460 V

3.540 V

3.420 V

3.580 V

3.6 V

36

3.560 V

3.640 V

3.520 V

3.680 V

3.7 V

37

3.660 V

3.740 V

3.620 V

3.780 V

3.8 V

38

3.760 V

3.840 V

3.720 V

3.880 V

3.9 V

39

3.860 V

3.940 V

3.820 V

3.980 V

4.0 V

40

3.960 V

4.040 V

3.920 V

4.090 V

4.1 V

41

4.059 V

4.141 V

4.009 V

4.191 V

4.2 V

42

4.158 V

4.242 V

4.108 V

4.292 V

4.3 V

43

4.257 V

4.343 V

4.197 V

4.893 V

4.4 V

44

4.356 V

4.444 V

4.306 V

4.494 V

4.5 V

45

4.455 V

4.545 V

4.405 V

4.595 V

4.6 V

46

4.554 V

4.646 V

4.504 V

4.496 V

4.7 V

47

4.653 V

4.747 V

4.603 V

4.497 V

4.8 V

48

4.752 V

4.848 V

4.702 V

4.898 V

4.9 V

49

4.851 V

5.049 V

4.801 V

5.099 V

5.0 V

50

4.950 V

5.050 V

4.900 V

5.100 V

background image

Page 6

December 1999 TOKO, Inc.

TK716xx

VOLTAGE AVAILABILITY TABLE 4

Output

TK716xxSCL

TK716xxASCL

TK716xxSCLH

TK716ASCLH

TK716xxSIL

TK716xxASIL

Voltage

1.3 V

X

1.4 V

X

1.5 V

X

X

1.6 V

X

1.7 V

X

1.8 V

X

X

1.9 V

X

2.0 V

X

X

X

X

2.1 V

X

X

X

X

2.2 V

X

X

X

X

2.3 V

X

X

2.4 V

X

X

X

X

X

X

2.5 V

X

X

X

X

X

X

2.6 V

X

X

X

2.7 V

X

X

X

X

X

X

2.8 V

X

X

X

X

X

X

2.9 V

X

X

X

X

X

X

3.0 V

X

X

X

X

X

X

3.1 V

X

X

X

X

X

X

3.2 V

X

X

X

X

X

X

3.3 V

X

X

X

X

X

X

3.4 V

X

X

X

3.5 V

X

X

X

X

X

X

3.6 V

X

X

X

X

X

X

3.7 V

X

X

X

3.8 V

X

X

X

X

X

X

3.9 V

X

X

X

4.0 V

X

X

X

4.1 V

X

X

X

X

X

X

4.2 V

X

X

X

X

X

X

4.3 V

X

X

X

4.4 V

X

X

X

4.5 V

X

X

X

X

X

X

4.6 V

X

X

X

4.7 V

X

X

X

X

X

X

4.8 V

X

X

X

X

X

X

4.9 V

X

X

X

X

X

X

5.0 V

X

X

X

X

X

X

5.1 V

X

X

5.2 V

X

X

5.3 V

X

X

5.4 V

X

X

Note:  X denotes voltage presently available.  Consult factory for availability of other voltages.

background image

December 1999 TOKO, Inc.

Page 7

TK716xx

IR

LEAK

 (

n

A)

4

REVERSE LEAKAGE CURRENT

 VS.

TEMPERATURE

TA (

°

C)

0            25           50           75        100

0

2

VIN, VCONT FLOATING

VOUT = 5 V SOURCE

3

1

TYPICAL PERFORMANCE CHARACTERISTICS

TEST CIRCUIT

ICONT

CL  = 3.3 µF

VCONT

VIN

+

+

CIN = 1.0 µF

+

IIN

VOUT

IOUT

VOUT

VIN

CONT

CN = 0.01 µF

GND

NOISE BYPASS

V

OUT

 (5 mV/ DIV)

LOAD REGULATION

IOUT (mA)

0                 50               100              150

VOUT TYPICAL

V

OUT

 (V)

3

5

SHORT CIRCUIT PROTECTION

IOUT (mA)

1

0                          150                        300

4

2

0

V

OUT

 (50

 m

V/

 DIV)

LINE REGULATION

VIN (V)

0                           10                          20

VOUT TYPICAL

V

DROP

 (

m

V)

-100

0

DROPOUT VOLTAGE 

VS.

OUTPUT CURRENT

IOUT (mA)

-200

0                          100                       200

-50

-150

-250

V

OUT

 (20 mV/ DIV)

OUTPUT VOLTAGE 

VS

.

INPUT VOLTAGE

VIN (50 MV/DIV)

0         VIN = VOUT

VOUT TYPICAL

IOUT = 150 mA

IOUT = 0 mA

IOUT = 25 mA

IOUT is changed

 by 25 mA step.

background image

Page 8

December 1999 TOKO, Inc.

TK716xx

TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)

I GND 

(m

A)

4

GROUND CURRENT

TA (

°

C)

2

-50                 0                 50              100

0

IOUT = 60 mA

IOUT = 30 mA

IOUT = 90 mA

STANDBY CURRENT 

VS.

INPUT VOLTAGE

VIN (V)

I STBY 

(A)

0                           10                          20

IE-10

IE-9

IE-8

IE-7

IE-11

IE-12

QUIESCENT CURRENT (ON MODE)

VS. 

INPUT VOLTAGE

VIN (V)

I Q 

(mA)

0                           10                          20

1.0

2.0

0

IOUT = 0 mA

VOUT = 3 V

VOUT = 4 V

VOUT = 5 V

REVERSE BIAS CURRENT

(VIN = 0 V)

VREV (V)

I REV (A)

0                            5                           10

IE-12

IE-9

IE-6

IE-3

CONTROL CURRENT (ON MODE)

VS. 

CONTROL PIN VOLTAGE

VCONT(V)

I CONT 

(µA)

0                           2.5                          5

2.5

5.0

0

IOUT = 0 mA

VOUT

REVERSE BIAS CURRENT 

VS.

TEMPERATURE (VIN = 0 V)

TA (

°

C)

I REV (A)

0            25           50           75         100

IE-12

IE-9

IE-6

IE-3

background image

December 1999 TOKO, Inc.

Page 9

TK716xx

V

DROP

 (

m

V)

200

DROPOUT VOLTAGE

TA (

°

C)

150

-50                 0                 50              100

0

100

50

IOUT = 60 mA

IOUT = 150 mA

IOUT = 1mA

IOUT = 90 mA

IOUT = 30 mA

I CONT

 (

µ

A)

5

CONTROL CURRENT

TA (

°

C)

4

-50                 0                 50              100

0

3

2

1

VCONT = 3.3 V

VCONT = 1.8 V

I OUT

 (

m

A)

340

MAXIMUM OUTPUT CURRENT

TA (

°

C)

-50                 0                 50              100

260

300

320

280

TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)

OUTPUT NOISE DENSITY

f (Hz)

NOISE (µV/   H

Z

)

100               I K             10 K            100 K

1.0

10

0

IOUT = 30 mA

CL = 2.2 µF

CNP = 0.001 µF

0.1

CNP = 0.01 µF

CNP = 0.1 µF

RIPPLE REJECTION

0.01         0.1           1            10          100

f (kHz)

-80

RR (dB)

-20

-60

-40

0

-100

IOUT =30  mA

CL = 3.3 µF

CN = 0.01 µF

CL = 3.3 µF

CN = 0.1 µF

V

OUT

T

 (ppm)

10

OUTPUT VOLTAGE TEMPERATURE

COEFFICIENT

TA (

°

C)

-50                 0                 50              100

-30

-10

0

-20

VOUT = 3 V

background image

Page 10

December 1999 TOKO, Inc.

TK716xx

LOAD CURRENT STEP RESPONSE 1

TIME (2.5 µs/ DIV)

I OUT

V

OUT

V

OUT (20 mV/ DIV)

CN = 0.01 µF, CL = 2.2 µF

IOUT = 0 to 30 mA

IOUT = 30 to 60 mA

IOUT = 5 to 35 mA

LINE VOLTAGE STEP RESPONSE 1

TIME (50 µs/ DIV)

V

IN

V

OUT

CN = 0.01 µF, CL = 2.2 µF

V

OUT

V

OUT (10 mV/ DIV)

CN = 0.001 µF, CL = 2.2 µF

VOUT +1 V

VOUT +2 V

LINE VOLTAGE STEP RESPONSE 2

TIME (50 µs/ DIV)

V

IN

V

OUT

CN = 0.01 µF, CL = 10 µF

V

OUT

V

OUT (10 mV/ DIV)

CN = 0.01 µF, CL = 3.3 µF

VOUT +1 V

VOUT +2 V

V

CONT

OUTPUT VOLTAGE RESPONSE 2

(OFF ~ ON)

TIME (µs)

0        200      400      600      800

V

OUT

CN = 1000 pF

CN = 0.1 µF

CN = 0.01 µF

ILOAD = 30 mA, CL = 3.3 µF

V

CONT

OUTPUT VOLTAGE RESPONSE 1

(OFF ~ ON)

TIME (µs)

0         20        40        60        80

V

OUT

CL = 2.2 µF

CL = 3.3 µF

CL = 10 µF

ILOAD = 10 mA, CN = 1000 pF

CL = 4.7 µF

TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)

NOISE

 (

µ

V)

250

NOISE LEVEL 

VS.

 CN

CN

1 pF     10 pF    100 pF 1000 pF  0.01 µF 0.1 µF

50

150

200

100

0

CL = 2.2 µF

CL = 3.3 µF

CL = 10 µF

background image

December 1999 TOKO, Inc.

Page 11

TK716xx

TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)

LOAD CURRENT STEP RESPONSE 2

TIME (2.5 µs/ DIV)

I OUT

V

OUT

V

OUT (20 mV/ DIV)

CN = 0.01 µF, CL = 2.2 µF

IOUT = 60 to 30 mA

IOUT = 30 to 0 mA

IOUT = 35 to 5 mA

CONTROL VOLTAGE 

VS.

 TEMPERATURE

TA (

°

C)

V

CONT

 (V)

0            25           50           75         100

1.5

2.0

0

1.0

0.5

OUTPUT ON

OUTPUT OFF

SHORT CIRCUIT CURRENT 

VS.

 INPUT VOLTAGE

VIN (V)

I OUT

 (mA)

0             2             4             6             8

300

400

0

200

100

VOUT IS CONNECTED TO GND

CONTROL CURRENT 

VS.

 TEMPERATURE

TA (

°

C)

I CONT

 (µ

A)

0            25           50           75         100

4.0

5.0

0

3.0

2.0

VCONT = 5.0 V

1.0

VCONT = 2.0 V

DROPOUT CHARACTERISTICS

VIN (1 V/ DIV)

V

OUT

 (0

.5

 V/

 DIV)

IOUT = 80  mA

IOUT = 0  mA

VIN = VOUT

VOUT

GROUND CURRENT 

VS.

OUTPUT CURRENT

IOUT (mA)

I GND

 (mA)

0      0.9      40      50     120    160   200

30

40

0

20

10

background image

Page 12

December 1999 TOKO, Inc.

TK716xx

GROUND CURRENT 

VS. 

INPUT

SUPPLY VOLTAGE (VOUT = 3.6 V)

VIN (V)

I GND

 (mA)

0          1          2          3          4          5

3

4

0

2

1

IOUT= 50 mA

IOUT = 0 mA

GROUND CURRENT 

VS.

TEMPERATURE

TA (

°

C)

I GND

 (mA)

0            25           50           75         100

3

4

0

2

1

IOUT = 80 mA

IOUT = 50 mA

IOUT = 0 mA

I SC

 (

m

A)

400

INSTANTANEOUS SHORT CIRCUIT

CURRENT 

VS.

 TEMPERATURE

TA (

°

C)

0            25           50           75        100

0

200

VIN = VOUT +1

CL = 2.2 µF TANTALUM

300

100

TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)

background image

December 1999 TOKO, Inc.

Page 13

TK716xx

DEFINITION AND EXPLANATION OF TECHNICAL TERMS

OUTPUT VOLTAGE (V

OUT

)

The output voltage is specified with V

IN

 = (V

OUT(TYP)

 + 1 V)

and I

OUT

 = 5 mA.

DROPOUT VOLTAGE (V

DROP

)

The dropout voltage is the difference between the input

voltage and the output voltage at which point the regulator

starts to fall out of regulation. Below this value, the output

voltage will fall as the input voltage is reduced. It is

dependent upon the load current and the junction

temperature.

CONTINUOUS OUTPUT CURRENT (I

OUT

)

Normal operating output current. This is limited by package

power dissipation.

PULSE OUTPUT CURRENT (I

OUT (PULSE)

)

Maximum pulse width 10 ms; duty cycle is 40%: pulse load

only.

LINE REGULATION (Line Reg)

Line regulation is the ability of the regulator to maintain a

constant output voltage as the input voltage changes. The

line regulation is specified as the input voltage is changed

from V

IN

 = V

OUT

 + 1 V to V

IN

 = V

OUT 

+ 6 V.

LOAD REGULATION (Load Reg)

Load regulation is the ability of the regulator to maintain a

constant output voltage as the load current changes. It is

a pulsed measurement to minimize temperature effects

with the input voltage set to V

IN

 = V

OUT

 +1 V. The load

regulation is specified under three output current step

conditions of 1 mA to 50 mA, 1 mA to 100 mA and 1 mA to

150 mA.

QUIESCENT CURRENT (I

Q

)

The quiescent current is the current which flows through

the ground terminal under no load conditions (I

OUT

 = 0 mA).

GROUND CURRENT (I

GND

)

Ground Current is the current which flows through the

ground pin(s). It is defined as I

IN

 - I

OUT

, excluding control

current.

RIPPLE REJECTION RATIO (RR)

Ripple rejection is the ability of the regulator to attenuate

the ripple content of the input voltage at the output. It is

specified with 100 mVrms, 400 Hz superimposed on the

input voltage, where V

IN

 = V

OUT 

+ 1.5 V. The output

decoupling capacitor is set to 10 

µ

F, the noise bypass

capacitor is set to 0.1 

µ

F, and the load current is set to

30 mA. Ripple rejection is the ratio of the ripple content of

the output vs. the input and is expressed in dB.

STANDBY CURRENT (I

STBY

)

Standby current is the current which flows into the regulator

when the output is turned off by the control function

(V

CONT

 = 0 V). It is measured with V

IN

 = 8 V.

SENSOR CIRCUITS

Overcurrent Sensor

The overcurrent sensor protects the device if the output is

shorted to ground.

Thermal Sensor

The thermal sensor protects the device if the junction

temperature exceeds the safe value (T

j

 = 150 

°

C). This

temperature rise can be caused by extreme heat, excessive

power dissipation caused by large output voltage drops, or

excessive output current. The regulator will shut off when

the temperature exceeds the safe value. As the junction

temperature decreases, the regulator will begin to operate

again. Under sustained fault conditions, the regulator

output will oscillate as the device turns off then resets.

Damage may occur to the device under extreme fault

conditions.

Reverse Voltage Protection

Reverse voltage protection prevents damage due to the

output voltage being higher than the input voltage. This

fault condition can occur when the output capacitor remains

charged and the input is reduced to zero, or when an

external voltage higher than the input voltage is applied to

the output side.

background image

Page 14

December 1999 TOKO, Inc.

TK716xx

DEFINITION AND EXPLANATION OF TECHNICAL TERMS (CONT.)

PACKAGE POWER DISSIPATION (P

D

)

This is the power dissipation level at which the thermal

sensor is activated. The IC contains an internal thermal

sensor which monitors the junction temperature. When the

junction temperature exceeds the monitor threshold of

150

°

C, the IC is shut down. The junction temperature

rises as the difference between the input power (V

IN

 x I

IN

)

and the output power (V

OUT

 x I

OUT

) increases. The rate of

temperature rise is greatly affected by the mounting pad

configuration on the PCB, the board material, and the

ambient temperature. When the IC mounting has good

thermal conductivity, the junction temperature will be low

even if the power dissipation is great. When mounted on

the recommended mounting pad, the power dissipation of

the SOT23-5 is increased to 500 mW. For operation at

ambient temperatures over 25 

°

C, the power dissipation of

the SOT23-5 device should be derated at 4.0 mW/ 

°

C. To

determine the power dissipation for shutdown when

mounted, attach the device on the actual PCB and

deliberately increase the output current (or raise the input

voltage) until the thermal protection circuit is activated.

Calculate the power dissipation of the device by subtracting

the output power from the input power. These

measurements should allow for the ambient temperature

of the PCB. The value obtained from P

/(150 

°

C - T

A

) is the

derating factor. The PCB mounting pad should provide

maximum thermal conductivity in order to maintain low

device temperatures. As a general rule, the lower the

temperature, the better the reliability of the device. The

thermal resistance when mounted is expressed as follows:

T

j

 = 0

jA

 x P

D

 + T

A

For Toko ICs, the internal limit for junction temperature is

150 

°

C. If the ambient temperature (T

A

) is 25 

°

C, then:

150 

°

C = 0

jA

 x P

D

 + 25 

°

C

0

jA

 = 125 

°

C / P

D

P

D

 is the value when the thermal protection circuit is

activated. A simple way to determine P

D

 is to calculate V

IN

x I

IN

 when the output side is shorted. Input current gradually

falls as temperature rises. You should use the value when

thermal equilibrium is reached.

The range of usable currents can also be found from the

graph below.

Procedure:

1) Find P

D

2) P

D1

 is taken to be P

D

 x (~0.8 - 0.9)

3) Plot P

D1

 against 25 

°

C

4) Connect P

D1 

 to the point corresponding to the 150 

°

C

with a straight line.

5) In design, take a vertical line from the maximum

operating temperature (e.g., 75 

°

C) to the derating

curve.

6) Read off the value of P

D

 against the point at which the

vertical line intersects the derating curve. This is taken

as the maximum power dissipation, D

PD

.

The maximum operating current is:

 I

OUT

 = (D

PD 

/ (V

IN(MAX) 

-

 

V

OUT

)

SOT23-5 POWER DISSIPATION CURVE

PD

DPD

25

50

75

150

(mW)

TA (

°

C)

3

6

5

4

0                 50              100              150

TA (

°

C)

P

D

 (

m

W)

0

100

500

MOUNTED AS

SHOWN

FREE AIR

200

300

400

background image

December 1999 TOKO, Inc.

Page 15

TK716xx

INPUT-OUTPUT CAPACITORS

Linear regulators require input and output capacitors in order to maintain regulator loop stability.  The equivalent series

resistance (ESR) of the output capacitor must be in the stable operation area.  Since the ESR varies widely between

ceramic and tantalum capacitors, the proper IC must be selected according to the output capacitor used:

The TK716xxS is designed for use with ceramic output capacitors.

(Chip tantalum capacitors and electrolytic capacitors with an ESR below 6 

 can provide stable operation.)

The TK716xxAS is designed for use with tantalum output capacitors.

The DC electrical characteristics and the specifications of the TK716xxS and TK716xxAS are the same; only the value

of the internal phase compensation is different.  Increasing the value of the required output capacitor does not cause

abnormal operation.  Increasing the value can improve noise reduction, line regulation, load regulation, and stability.

For stable operation, an input capacitor of 0.22 

µ

F or more is required.

Note:  it is very important to check the selected manufacturers’ electrical characteristics.  The values of capacitance and

ESR vary from manufacturer to manufacturer, and with product type.  A thorough examination is necessary to determine

the characteristics of the capacitor in mass production.  The characteristics also vary over temperature.  In general, it is

recommended to use as large a value of output capacitance as is practical.  Please refer to the following graphs for output

capacitor selection.

APPLICATION INFORMATION

Output side capacitor C

L

 = 2.2 

µ

F

TK71630S

  0                   50                 100           130

IOUT (mA)

0.1

10

1

100

0.01

Stable area

ESR (

)

TK71630AS

  0                   50                 100           130

IOUT (mA)

0.1

10

1

100

0.01

Stable area

3.3 µF

ESR (

)

background image

Page 16

December 1999 TOKO, Inc.

TK716xx

The value of ESR between ceramic and tantalum capacitors differs by about two orders of magnitude as illustrated below.

The characteristics of tantalum capacitors also vary widely according to manufacturer.  The output capacitor becomes

a part of the phase compensation in a LDO regulator using a PNP pass transistor.  Because of this, it is necessary to

optimize the phase compensation in the IC for use with ceramic or tantalum capacitors.

BOARD LAYOUT

SOT23-5 BOARD LAYOUT

APPLICATION INFORMATION (CONT.)

+

NOISE

BYPASS

CONTROL

VIN

VOUT

+

GND

ESR vs. TEMPERATURE

at 100 kHZ

           -20        0                        50  60

TEMPERATURE (

°

C)

0.1

1

10

0.01

ESR (

)

Tantalum Cap

Ceramic Cap

background image

December 1999 TOKO, Inc.

Page 17

TK716xx

REVERSE BIAS PROTECTION

The internal reverse bias protection eliminates the

requirement for a reverse voltage protection diode. This

saves both cost and board space.

Another reverse bias protection technique is illustrated

below. The extra diode and extra capacitor are not

necessary with the TK716xx. The high output voltage

accuracy is maintained because the diode forward voltage

variations over temperature and load current have been

eliminated.

HIGH-SIDE SWITCHING

High-side switching should not be implemented by an

external transistor as shown below. This results in additional

voltage drop and loss of accuracy.

TK716xxS

VOUT

VIN

GND

APPLICATION INFORMATION (CONT.)

The high output voltage accuracy and low dropout voltage

are maintained when the IC is turned ON/OFF by using the

control pin as illustrated below.

High-side switching with a FET is illustrated below. Battery

life is extended by the dropout voltage of the FET when the

input of the TK716xx is connected in front of the FET

switch.

VOLTAGE BACKUP OPERATION (HOLDUP TIME)

C

L

 becomes the backup power supply when the

microprocessor is reset with the voltage detector IC

simultaneously with the turning OFF the TK716xx. C

L

provides the holdup time necessary to do an orderly

shutdown of the microprocessor.

TK716xxS

VOUT

VIN

ON/OFF

CONTROL

VOUT

VOLTAGE

REGULATOR

VDROP

TK716xxS

VOUT

VIN

GND

µ PRO

VCONT

VIN

TK716xxS

VOUT

VIN

GND

VOLTAGE

DETECTOR IC

VCONT OFF

µ PRO

RESET

CL

716xx

VOUT

VIN

VCONT

FET SWITCHING OUTPUT

background image

Page 18

December 1999 TOKO, Inc.

TK716xx

PARALLEL ON/OFF CONTROL

The figure below illustrates multiple regulators being

controlled by a single ON/OFF control signal. The series

resistor R is put in the input line of the low output voltage

regulator in order to prevent overdissipation. The voltage

dropped across the resistor reduces the large input-to-

output voltage across the regulator, reducing the power

dissipation in the device.

SWITCHING OPERATION

Even though the input voltages or the output voltages are

different, the outputs of the TK716xx regulators can be

connected together, and the output voltages switched. If

two or more TK716xx regulators are turned ON

simultaneously, the highest output voltage will be present.

The outputs of the TK716xx regulator and a CMOS regulator

can be connected together as long as the output voltage of

the TK716xx is greater than the CMOS regulator. When

the TK716xx is OFF, the CMOS regulator is turned ON.

When the TK716xx is ON, the CMOS regulator is turned

OFF.

APPLICATION INFORMATION (CONT.)

TK71650

5 V

VIN

TK71630

TK71620

3 V

2 V

ON/OFF CONTROL

R

TK71630

VIN

TK71628

VIN

VOUT

3.0 OR 2.8 V

ON/OFF LOGIC

VCONT

VCONT

CURRENT BOOST OPERATION

The output current can be increased by connecting an

external PNP transistor as shown below. The output

current capability depends upon the H

fe

 of the external

transistor. Note: The TK716xx internal short circuit

protection and thermal sensor do not protect the external

transistor.

TK716xx

VIN

CMOS

REGULATOR

VOUT

ON/OFF LOGIC

TK716xx

VIN

VOUT

VCONT

0.22 µF

150 

VIN

background image

December 1999 TOKO, Inc.

Page 19

TK716xx

NOTES

background image

Page 20

December 1999 TOKO, Inc.

TK716xx

0.95

0.95

0.95

0.95

e

M

0.1

2.9

1.6

1.1

0.15

0.4

2.8

1.90

2.4

e'

Recommended Mount Pad

1

2

3

4

5

1.0

0.7

(0.8)

0 - 0.1

(0.6)

(0.6)

1.4 max

e

e

e

0.1

e1

0 - 15     max

Marking

±

0.3

+0.15

- 0.05

Dimensions are shown in millimeters

Tolerance: x.x = 

±

 0.2 mm (unless otherwise specified)

+0.15

 -0.05

Marking Information

    Part Number      TK716xxS      TK716xxAS

                       Marking            Marking

TK71613

L13

13L

TK71614

L14

14L

TK71615

L15

15L

TK71616

L16

16L

TK71617

L17

17L

TK71618

L18

18L

TK71619

L19

19L

TK71620

L20

20L

TK71621

L21

21L

TK71622

L22

22L

TK71623

L23

23L

TK71624

L24

24L

TK71625

L25

25L

TK71626

L26

26L

TK71627

L27

27L

TK71628

L28

28L

TK71629

L29

29L

TK71630

L30

30L

TK71631

L31

31L

TK71632

L32

32L

TK71633

L33

33L

TK71634

L34

34L

TK71635

L35

35L

TK71636

L36

36L

TK71637

L37

37L

TK71638

L38

38L

TK71639

L39

39L

TK71640

L40

40L

TK71641

L41

41L

TK71642

L42

42L

TK71643

L43

43L

TK71644

L44

44L

TK71645

L45

45L

TK71646

L46

46L

TK71647

L47

47L

TK71648

L48

48L

TK71649

L49

49L

TK71650

L50

50L

TK71651

L51

51L

TK71652

L52

52L

TK71653

L53

53L

TK71654

L54

54L

Check Table 4 for availability.

SOT23-5

PACKAGE OUTLINE

Printed in the USA

© 1999 Toko, Inc.

All Rights Reserved

TOKO AMERICA REGIONAL OFFICES

Toko America, Inc. Headquarters

1250 Feehanville Drive,  Mount Prospect, Illinois  60056

Tel: (847) 297-0070    Fax: (847) 699-7864

IC-216-TK716xx

0798O0.0K

Visit our Internet site at http://www.tokoam.com

The information furnished by TOKO, Inc. is believed to be accurate and reliable. However, TOKO reserves the right to make changes or improvements in the design, specification or manufacture of its

products without further notice. TOKO does not assume any liability arising from the application or use of any product or circuit described herein, nor for any infringements of patents or other rights of

third parties which may result from the use of its products. No license is granted by implication or otherwise under any patent or patent rights of TOKO, Inc.

Western Regional Office

Toko America, Inc.

2480 North First Street , Suite 260

San Jose, CA 95131

Tel: (408) 432-8281

Fax: (408) 943-9790

Midwest Regional Office

Toko America, Inc.

1250 Feehanville Drive

Mount Prospect, IL 60056

Tel: (847) 297-0070

Fax: (847) 699-7864

Eastern Regional Office

Toko America, Inc.

107 Mill Plain Road

Danbury, CT 06811

Tel: (203) 748-6871

Fax: (203) 797-1223

Semiconductor Technical Support

Toko Design Center

4755 Forge Road

Colorado Springs, CO 80907

Tel: (719) 528-2200

Fax: (719) 528-2375