background image

TL5001, TL5001A

PULSE-WIDTH-MODULATION CONTROL CIRCUITS

SLVS084E – APRIL 1994 – REVISED OCTOBER 1999

1

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

D

Complete PWM Power Control

D

3.6-V to 40-V Operation

D

Internal Undervoltage-Lockout Circuit

D

Internal Short-Circuit Protection

D

Oscillator Frequency . . . 20 kHz to 500 kHz

D

Variable Dead Time Provides Control Over

Total Range

D

±

3% Tolerance on Reference Voltage

(TL5001A)

D

Available in Q-Temp Automotive 

HighRel Automotive Applications

Configuration Control / Print Support

Qualification to Automotive Standards

     

description

The TL5001 and TL5001A incorporate on a single

monolithic chip all the functions required for a

pulse-width-modulation (PWM) control circuit.

Designed primarily for power-supply control, the

TL5001/A contains an error amplifier, a regulator,

an oscillator, a PWM comparator with a

dead-time-control input, undervoltage lockout

(UVLO), short-circuit protection (SCP), and an open-collector output transistor. The TL5001A has a typical

reference voltage tolerance of 

±

3% compared to 

±

5% for the TL5001.

The error-amplifier common-mode voltage ranges from 0 V to 1.5 V. The noninverting input of the error amplifier

is connected to a 1-V reference. Dead-time control (DTC) can be set to provide 0% to 100% dead time by

connecting an external resistor between DTC and GND. The oscillator frequency is set by terminating RT with

an external resistor to GND. During low V

CC

 conditions, the UVLO circuit turns the output off until V

CC

 recovers

to its normal operating range.

The TL5001C and TL5001AC are characterized for operation from – 20

°

C to 85

°

C. The TL5001I and TL5001AI

are characterized for operation from – 40

°

C to 85

°

C. The TL5001Q and TL5001AQ are characterized for

operation from – 40

°

C to 125

°

C. The TL5001M and TL5001AM are characterized for operation from – 55

°

C to

125

°

C.

AVAILABLE OPTIONS

PACKAGED DEVICES

TA

SMALL OUTLINE

(D)

PLASTIC DIP

(P)

CERAMIC DIP

(JG)

CHIP CARRIER

(FK)

20

°

C to 85

°

C

TL5001CD

TL5001CP

– 20

°

C to 85

°

C

TL5001ACD

TL5001ACP

40

°

C to 85

°

C

TL5001ID

TL5001IP

– 40

°

C to 85

°

C

TL5001AID

TL5001AIP

40

°

C to 125

°

C

TL5001QD

– 40

°

C to 125

°

C

TL5001AQD

55

°

C to 125

°

C

TL5001MJG

TL5001MFK

– 55

°

C to 125

°

C

TL5001AMJG

TL5001AMFK

The D package is available taped and reeled. Add the suffix R to the device type (e.g., TL5001CDR).

Copyright 

©

 1999, Texas Instruments Incorporated

PRODUCTION DATA information is current as of publication date.

Products conform to specifications per the terms of Texas Instruments

standard warranty. Production processing does not necessarily include

testing of all parameters.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of

Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

1

2

3

4

8

7

6

5

OUT

V

CC

COMP

FB

GND

RT

DTC

SCP

D, JG OR P PACKAGE

(TOP VIEW)

19

20

1

3

2

17

18

16

15

14

13

12

11

9

10

5

4

6

7

8

NC

RT

NC

DTC

NC

NC

V

CC

NC

COMP

NC

NC

OUT

NC

GND

NC

FB

NC

SCP

NC

NC

FK PACKAGE

(TOP VIEW)

background image

TL5001, TL5001A

PULSE-WIDTH-MODULATION CONTROL CIRCUITS

SLVS084E – APRIL 1994 – REVISED OCTOBER 1999

2

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

schematic for typical application

TL5001/A

FB

COMP

VO

DTC

RT

VI

+

SCP

VCC

+

TPS1101

GND

8

7

6

5

2

1

3

4

VO

functional block diagram

GND

8

OUT

SCP

COMP

FB

5

3

4

+

DTC

RT

6

7

Comparator 2

SCP

PWM/DTC

Comparator

OSC

Comparator 1

SCP

Amplifier

Error

UVLO

VCC

2

1

1 V

1.5 V

1 V

Reference

Voltage

IDT

2.5 V

background image

TL5001, TL5001A

PULSE-WIDTH-MODULATION CONTROL CIRCUITS

SLVS084E – APRIL 1994 – REVISED OCTOBER 1999

3

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

detailed description

voltage reference

A 2.5-V regulator operating from V

CC

 is used to power the internal circuitry of the TL5001 and TL5001A and

as a reference for the error amplifier and SCP circuits. A resistive divider provides a 1-V reference for the error

amplifier noninverting input which typically is within 2% of nominal over the operating temperature range.

error amplifier

The error amplifier compares a sample of the dc-to-dc converter output voltage to the 1-V reference and

generates an error signal for the PWM comparator. The dc-to-dc converter output voltage is set by selecting

the error-amplifier gain (see Figure 1), using the following expression:

V

O

 = (1 + R1/R2) (1 V)

To PWM

Comparator

Vref = 1 V

4

VI(FB)

3

+

R2

R1

COMP

FB

Compensation

Network

TL5001/A

GND

8

Figure 1. Error-Amplifier Gain Setting

The error-amplifier output is brought out as COMP for use in compensating the dc-to-dc converter control loop

for stability. Because the amplifier can only source 45 

µ

A, the total dc load resistance should be 100 k

 or more.

oscillator/PWM

The oscillator frequency (f

osc

) can be set between 20 kHz and 500 kHz by connecting a resistor between RT

and GND. Acceptable resistor values range from 15 k

 to 250 k

. The oscillator frequency can be determined

by using the graph shown in Figure 5.

The oscillator output is a triangular wave with a minimum value of approximately 0.7 V and a maximum value

of approximately 1.3 V. The PWM comparator compares the error-amplifier output voltage and the DTC input

voltage to the triangular wave and turns the output transistor off whenever the triangular wave is greater than

the lesser of the two inputs.

dead-time control (DTC)

DTC provides a means of limiting the output-switch duty cycle to a value less than 100 %, which is critical for

boost and flyback converters. A current source generates a reference current (I

DT

) at DTC that is nominally

equal to the current at the oscillator timing terminal, RT. Connecting a resistor between DTC and GND generates

a dead-time reference voltage (V

DT

), which the PWM/DTC comparator compares to the oscillator triangle wave

as described in the previous section. Nominally, the maximum duty cycle is 0 % when V

DT

 is 0.7 V or less and

100 % when V

DT

 is 1.3 V or greater. Because the triangle wave amplitude is a function of frequency and the

source impedance of RT is relatively high (1250 

), choosing R

DT

 for a specific maximum duty cycle, D, is

accomplished using the following equation and the voltage limits for the frequency in question as found in

Figure 11 (V

osc

max and V

osc

min are the maximum and minimum oscillator levels):

background image

TL5001, TL5001A

PULSE-WIDTH-MODULATION CONTROL CIRCUITS

SLVS084E – APRIL 1994 – REVISED OCTOBER 1999

4

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

dead-time control (DTC) (continued)

R

DT

+

ǒ

Rt

)

1250

Ǔ

ƪ

D

ǒ

Voscmax – Voscmin

Ǔ

)

Voscmin

ƫ

Where

R

DT

 and R

t

 are in ohms, D in decimal

Soft start can be implemented by paralleling the DTC resistor with a capacitor (C

DT

) as shown in Figure 2. During

soft start, the voltage at DTC is derived by the following equation:

V

DT

[

I

DT

R

DT

ǒ

1– e

ǒ

– t

ń

R

DT

C

DT

Ǔ

Ǔ

TL5001/A

DTC

CDT

RDT

6

Figure 2. Soft-Start Circuit

If the dc-to-dc converter must be in regulation within a specified period of time, the time constant, R

DT

C

DT

,

should be t

0

/3 to t

0

/5. The TL5001/A remains off until V

DT

 

 0.7 V, the minimum ramp value. C

DT

 is discharged

every time UVLO or SCP becomes active.

undervoltage-lockout (UVLO) protection

The undervoltage-lockout circuit turns the output transistor off and resets the SCP latch whenever the supply

voltage drops too low (approximately 3 V at 25

°

C) for proper operation. A hysteresis voltage of 200 mV

eliminates false triggering on noise and chattering.

short-circuit protection (SCP)

The TL5001/A includes short-circuit protection (see Figure 3), which turns the power switch off to prevent

damage when the converter output is shorted. When activated, the SCP prevents the switch from being turned

on until the internal latching circuit is reset. The circuit is reset by reducing the input voltage until UVLO becomes

active or until the SCP terminal is pulled to ground externally.

When a short circuit occurs, the error-amplifier output at COMP rises to increase the power-switch duty cycle

in an attempt to maintain the output voltage. SCP comparator 1 starts an RC timing circuit when COMP exceeds

1.5 V. If the short is removed and the error-amplifier output drops below 1.5 V before time out, normal converter

operation continues. If the fault is still present at the end of the time-out period, the timer sets the latching circuit

and turns off the TL5001/A output transistor.

background image

TL5001, TL5001A

PULSE-WIDTH-MODULATION CONTROL CIRCUITS

SLVS084E – APRIL 1994 – REVISED OCTOBER 1999

5

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

short-circuit protection (SCP) (continued)

Q1

12 k

185 k

RSCP

Q2

SCP

Comparator 2

Vref = 1 V

SCP

Comparator 1

1.5 V

From Error

 Amp

CSCP

To Output

Drive Logic

SCP

5

2.5 V

Figure 3. SCP Circuit

The timer operates by charging an external capacitor (C

SCP

), connected between the SCP terminal and ground,

towards 2.5 V through a 185-k

 resistor (R

SCP

). The circuit begins charging from an initial voltage of

approximately 185 mV and times out when the capacitor voltage reaches 1 V. The output of SCP comparator

2 then goes high, turns on Q2, and latches the timer circuit. The expression for setting the SCP time period is

derived from the following equation:

V

SCP

+

(2.5

*

0.185)

ǒ

1

*

e–t

ńt

Ǔ

)

0.185

Where

τ

 = R

SCP

C

SCP

The end of the time-out period, t

SCP

, occurs when V

SCP

 = 1 V. Solving for C

SCP

 yields:

C

SCP

+

12.46

 

t

SCP

Where

t is in seconds, C in 

µ

F.

t

SCP

 must be much longer (generally 10 to 15 times) than the converter start-up period or the converter will not

start.

output transistor

The output of the TL5001/A is an open-collector transistor with a maximum collector current rating of 21 mA and

a voltage rating of 51 V. The output is turned on under the following conditions: the oscillator triangle wave is

lower than both the DTC voltage and the error-amplifier output voltage, the UVLO circuit is inactive, and the

short-circuit protection circuit is inactive.

background image

TL5001, TL5001A

PULSE-WIDTH-MODULATION CONTROL CIRCUITS

SLVS084E – APRIL 1994 – REVISED OCTOBER 1999

6

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V

CC

 (see Note 1) 

41 V

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Amplifier input voltage, V

I(FB)

 

20 V

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Output voltage, V

O

, OUT 

51 V

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Output current, I

O

, OUT 

21 mA

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Output peak current, I

O(peak)

, OUT 

100 mA

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Continuous total power dissipation 

See Dissipation Rating Table

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Operating ambient temperature range, T

A

:

TL5001C, TL5001AC 

– 20

°

C to 85

°

C

. . . . . . . . . . . . . . . . . . . . . . 

TL5001I, TL5001AI 

– 40

°

C to 85

°

C

. . . . . . . . . . . . . . . . . . . . . . . . 

TL5001Q, TL5001AQ 

– 40

°

C to 125

°

C

. . . . . . . . . . . . . . . . . . . . . 

TL5001M, TL5001AM 

– 55

°

C to 125

°

C

. . . . . . . . . . . . . . . . . . . . . 

Storage temperature range, T

stg

  – 65

°

C to 150

°

C

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds 

260

°

C

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and

functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not

implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage values are with respect to network ground terminal.

DISSIPATION RATING TABLE

PACKAGE

TA 

 25

°

C

POWER RATING

DERATING FACTOR

ABOVE TA = 25

°

C

TA = 70

°

C

POWER RATING

TA = 85

°

C

POWER RATING

TA = 125

°

C

POWER RATING

D

725 mW

5.8 mW/

°

C

464 mW

377 mW

145 mW

FK

1375 mW

11.0 mW/

°

C

880 mW

715 mW

275 mW

JG

1050 mW

8.4 mW/

°

C

672 mW

546 mW

210 mW

P

1000 mW

8.0 mW/

°

C

640 mW

520 mW

200 mW

recommended operating conditions

MIN

MAX

UNIT

Supply voltage, VCC

3.6

40

V

Amplifier input voltage, VI(FB)

0

1.5

V

Output voltage, VO, OUT

50

V

Output current, IO, OUT

20

mA

COMP source current

45

µ

A

COMP dc load resistance

100

k

Oscillator timing resistor, Rt

15

250

k

Oscillator frequency, fosc

20

500

kHz

TL5001C, TL5001AC

– 20

85

Operating ambient temperature TA

TL5001I, TL5001AI

– 40

85

°

C

Operating ambient temperature, TA

TL5001Q, TL5001AQ

– 40

125

°

C

TL5001M, TL5001AM

– 55

125

background image

TL5001, TL5001A

PULSE-WIDTH-MODULATION CONTROL CIRCUITS

SLVS084E – APRIL 1994 – REVISED OCTOBER 1999

7

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

electrical characteristics over recommended operating free-air temperature range, V

CC

 = 6 V,

f

osc

 = 100 kHz (unless otherwise noted)

reference

PARAMETER

TEST CONDITIONS

TL5001C, TL5001I

TL5001AC, TL5001AI

UNIT

PARAMETER

TEST CONDITIONS

MIN

TYP†

MAX

MIN

TYP†

MAX

UNIT

Output voltage

COMP connected to FB

0.95

1

1.05

0.97

1

1.03

V

Input regulation

VCC = 3.6 V to 40 V

2

12.5

2

12.5

mV

TA = – 20

°

C to 25

°

C (C suffix)

– 10

– 1

10

– 10

– 1

10

Output voltage change with temperature

TA = – 40

°

C to 25

°

C (I suffix)

– 10

– 1

10

– 10

– 1

10

mV/V

TA = 25

°

C to 85

°

C

– 10

– 2

10

– 10

– 2

10

† All typical values are at TA = 25

°

C.

undervoltage lockout

PARAMETER

TEST CONDITIONS

TL5001C, TL5001I

TL5001AC, TL5001AI

UNIT

PARAMETER

TEST CONDITIONS

MIN

TYP†

MAX

MIN

TYP†

MAX

UNIT

Upper threshold voltage

TA = 25

°

C

3

3

V

Lower threshold voltage

TA = 25

°

C

2.8

2.8

V

Hysteresis

TA = 25

°

C

100

200

100

200

mV

Reset threshold voltage

TA = 25

°

C

2.1

2.55

2.1

2.55

V

† All typical values are at TA = 25

°

C.

short-circuit protection

PARAMETER

TEST CONDITIONS

TL5001C, TL5001I

TL5001AC, TL5001AI

UNIT

PARAMETER

TEST CONDITIONS

MIN

TYP†

MAX

MIN

TYP†

MAX

UNIT

SCP threshold voltage

TA = 25

°

C

0.95

1.00

1.05

0.97

1.00

1.03

V

SCP voltage, latched

No pullup

140

185

230

140

185

230

mV

SCP voltage, UVLO standby

No pullup

60

120

60

120

mV

Input source current

TA = 25

°

C

–10

–15

–20

–10

–15

–20

µ

A

SCP comparator 1 threshold voltage

1.5

1.5

V

† All typical values are at TA = 25

°

C.

oscillator

PARAMETER

TEST CONDITIONS

TL5001C, TL5001I

TL5001AC, TL5001AI

UNIT

PARAMETER

TEST CONDITIONS

MIN

TYP†

MAX

MIN

TYP†

MAX

UNIT

Frequency

Rt = 100 k

100

100

kHz

Standard deviation of frequency

15

15

kHz

Frequency change with voltage

VCC = 3.6 V to 40 V

1

1

kHz

TA = – 40

°

C to 25

°

C

– 4

– 0.4

4

– 4

– 0.4

4

kHz

Frequency change with temperature

TA = – 20

°

C to 25

°

C

– 4

– 0.4

4

– 4

– 0.4

4

kHz

TA = 25

°

C to 85

°

C

– 4

– 0.2

4

– 4

– 0.2

4

kHz

Voltage at RT

1

1

V

† All typical values are at TA = 25

°

C.

background image

TL5001, TL5001A

PULSE-WIDTH-MODULATION CONTROL CIRCUITS

SLVS084E – APRIL 1994 – REVISED OCTOBER 1999

8

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

electrical characteristics over recommended operating free-air temperature range, V

CC

 = 6 V,

f

osc

 = 100 kHz (unless otherwise noted) (continued)

dead-time control

PARAMETER

TEST CONDITIONS

TL5001C, TL5001I

TL5001AC, TL5001AI

UNIT

PARAMETER

TEST CONDITIONS

MIN

TYP†

MAX

MIN

TYP†

MAX

UNIT

Output (source) current

TL5001C

V(DT) = 1.5 V

0.9 

×

 IRT‡

1.1 

×

 IRT 0.9 

×

 IRT‡

1.1 

×

 IRT

µ

A

Output (source) current

TL5001I

V(DT) = 1.5 V

0.9 

×

 IRT‡

1.2 

×

 IRT 0.9 

×

 IRT‡

1.2 

×

 IRT

µ

A

Input threshold voltage

Duty cycle = 0%

0.5

0.7

0.5

0.7

V

Input threshold voltage

Duty cycle = 100%

1.3

1.5

1.3

1.5

V

† All typical values are at TA = 25

°

C.

‡ Output source current at RT

error amplifier

PARAMETER

TEST CONDITIONS

TL5001C, TL5001I

TL5001AC, TL5001AI

UNIT

PARAMETER

TEST CONDITIONS

MIN

TYP†

MAX

MIN

TYP†

MAX

UNIT

Input voltage

VCC = 3.6 V to 40 V

0

1.5

0

1.5

V

Input bias current

– 160

– 500

– 160

– 500

nA

Output voltage swing

Positive

1.5

2.3

1.5

2.3

V

Output voltage swing

Negative

0.3

0.4

0.3

0.4

V

Open-loop voltage amplification

80

80

dB

Unity-gain bandwidth

1.5

1.5

MHz

Output (sink) current

VI(FB) = 1.2 V, COMP = 1 V

100

600

100

600

µ

A

Output (source) current

VI(FB) = 0.8 V, COMP = 1 V

– 45

– 70

– 45

– 70

µ

A

† All typical values are at TA = 25

°

C.

output

PARAMETER

TEST CONDITIONS

TL5001C, TL5001I

TL5001AC, TL5001AI

UNIT

PARAMETER

TEST CONDITIONS

MIN

TYP†

MAX

MIN

TYP†

MAX

UNIT

Output saturation voltage

IO = 10 mA

1.5

2

1.5

2

V

Off state current

VO = 50 V,

VCC = 0

10

10

µ

A

Off-state current

VO = 50 V

10

10

µ

A

Short-circuit output current

VO = 6 V

40

40

mA

† All typical values are at TA = 25

°

C.

total device

PARAMETER

TEST CONDITIONS

TL5001C, TL5001I

TL5001AC, TL5001AI

UNIT

PARAMETER

TEST CONDITIONS

MIN

TYP†

MAX

MIN

TYP†

MAX

UNIT

Standby supply current

Off state

1

1.5

1

1.5

mA

Average supply current

Rt = 100 k

1.4

2.1

1.4

2.1

mA

† All typical values are at TA = 25

°

C.

background image

TL5001, TL5001A

PULSE-WIDTH-MODULATION CONTROL CIRCUITS

SLVS084E – APRIL 1994 – REVISED OCTOBER 1999

9

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

electrical characteristics over recommended operating free-air temperature range, V

CC

 = 6 V,

f

osc

 = 100 kHz (unless otherwise noted)

reference

PARAMETER

TEST CONDITIONS

TL5001Q,

TL5001M

TL5001AQ,

TL5001AM

UNIT

MIN

TYP†

MAX

MIN

TYP†

MAX

Output voltage

TA = MIN, 25

°

C

COMP connected to FB

0.95

1.00

1.05

0.97

1.00

1.03

V

Output voltage

TA = MAX

COMP connected to FB

0.93

0.98

1.07

0.94

0.98

1.06

V

Input regulation

TA = MIN to MAX

VCC = 3.6 V to 40 V

2

12.5

2

12.5

mV

Output voltage change with

temperature

TA = MIN to MAX

*– 6

2

*6

*– 6

2

*6

%

† All typical values are at TA = 25

°

C.

*Not production tested.

undervoltage lockout

PARAMETER

TEST CONDITIONS

TL5001Q,

TL5001M

TL5001AQ,

TL5001AM

UNIT

PARAMETER

TEST CONDITIONS

MIN

TYP†

MAX

MIN

TYP†

MAX

UNIT

Upper threshold voltage

TA = MIN, 25

°

C

3.00

3.00

V

Upper threshold voltage

TA = MAX

2.55

2.55

V

Lower threshold voltage

TA = MIN, 25

°

C

2.8

2.8

V

Lower threshold voltage

TA = MAX

2.0

2.0

V

Hysteresis

TA = MIN to MAX

100

200

100

200

mV

Reset threshold voltage

TA = MIN, 25

°

C

2.10

2.55

2.10

2.55

V

Reset threshold voltage

TA = MAX

0.35

0.63

0.35

0.63

V

† All typical values are at TA = 25

°

C.

short-circuit protection

PARAMETER

TEST CONDITIONS

TL5001Q,

TL5001M

TL5001AQ,

TL5001AM

UNIT

MIN

TYP†

MAX

MIN

TYP†

MAX

SCP threshold voltage

TA = MIN, 25

°

C

0.95

1.00

1.05

0.97

1.00

1.03

V

SCP threshold voltage

TA = MAX

0.93

0.98

1.07

0.94

0.98

1.06

V

SCP voltage, latched

TA = MIN to MAX

No pullup

140

185

230

140

185

230

mV

SCP voltage, UVLO standby

TA = MIN to MAX

No pullup

60

120

60

120

mV

Equivalent timing resistance

TA = MIN to MAX

185

185

k

SCP comparator 1 threshold voltage

TA = MIN to MAX

1.5

1.5

V

† All typical values are at TA = 25

°

C.

background image

TL5001, TL5001A

PULSE-WIDTH-MODULATION CONTROL CIRCUITS

SLVS084E – APRIL 1994 – REVISED OCTOBER 1999

10

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

electrical characteristics over recommended operating free-air temperature range, V

CC

 = 6 V,

f

osc

 = 100 kHz (unless otherwise noted) (continued)

oscillator

PARAMETER

TEST CONDITIONS

TL5001Q,

TL5001M

TL5001AQ,

TL5001AM

UNIT

MIN

TYP†

MAX

MIN

TYP†

MAX

Frequency

TA = MIN to MAX

Rt = 100 k

100

100

kHz

Standard deviation of frequency

TA = MIN to MAX

2

2

kHz

Frequency change with voltage

TA = MIN to MAX

VCC = 3.6 V to 40 V

1

1

kHz

Frequency change with 

TA = MIN to MAX

Q suffix

*– 6

3

*6

*– 6

3

*6

kHz

Frequency change with 

temperature

TA = MIN to MAX

M suffix

*– 9

5

*9

*– 9

5

*9

kHz

Voltage at RT

TA = MIN to MAX

1

1

V

† All typical values are at TA = 25

°

C.

*Not production tested.

dead-time control

PARAMETER

TEST CONDITIONS

TL5001Q, TL5001M

TL5001AQ, TL5001AM

UNIT

PARAMETER

TEST CONDITIONS

MIN

TYP†

MAX

MIN

TYP†

MAX

UNIT

Output (source) 

current

TA = MIN to MAX

V(DT) = 1.5 V

0.9 

×

 IRT‡

1.1 

×

 IRT 0.9 

×

 IRT‡

1.1 

×

 IRT

µ

A

TA = 25

°

C

Duty cycle = 0%

0.5

0.7

0.5

0.7

Input threshold 

TA = 25

°

C

Duty cycle = 100%

1.3

1.5

1.3

1.5

V

voltage

TA = MIN to MAX

Duty cycle = 0%

0.4

0.7

0.4

0.7

V

TA = MIN to MAX

Duty cycle = 100%

1.3

1.7

1.3

1.7

† All typical values are at TA = 25

°

C.

‡ Output source current at RT

error amplifier

PARAMETER

TEST CONDITIONS

TL5001Q,

TL5001M

TL5001AQ,

TL5001AM

UNIT

PARAMETER

TEST CONDITIONS

MIN

TYP†

MAX

MIN

TYP†

MAX

UNIT

Input bias current

TA = MIN to MAX

– 160

– 500

– 160

– 500

nA

Output voltage

Positive

TA = MIN to MAX

1.5

2.3

1.5

2.3

V

Out ut  voltage

swing

Negative

TA = MIN to MAX

0.3

0.4

0.3

0.4

V

Open-loop voltage 

amplification

TA = MIN to MAX

80

80

dB

Unity-gain bandwidth

TA = MIN to MAX

1.5

1.5

MHz

Output (sink) current

TA = MIN to MAX

VI(FB) = 1.2 V, COMP = 1 V

100

600

100

600

µ

A

Output (source) current

TA = MIN, 25

°

C

VI(FB) = 0 8 V COMP = 1 V

– 45

– 70

– 45

– 70

µ

A

Output (source) current

TA = MAX

VI(FB) = 0.8 V, COMP = 1 V

– 30

– 45

– 30

– 45

µ

A

† All typical values are at TA = 25

°

C.

background image

TL5001, TL5001A

PULSE-WIDTH-MODULATION CONTROL CIRCUITS

SLVS084E – APRIL 1994 – REVISED OCTOBER 1999

11

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

electrical characteristics over recommended operating free-air temperature range, V

CC

 = 6 V,

f

osc

 = 100 kHz (unless otherwise noted) (continued)

output

PARAMETER

TEST CONDITIONS

TL5001Q,

TL5001M

TL5001AQ,

TL5001AM

UNIT

MIN

TYP†

MAX

MIN

TYP†

MAX

Output saturation voltage

TA = MIN to MAX

IO = 10 mA

1.5

2

1.5

2

V

Off state current

TA = MIN to MAX

VO = 50 V, VCC = 0

10

10

µ

A

Off-state current

TA = MIN to MAX

VO = 50 V

10

10

µ

A

Short-circuit output current

TA = MIN to MAX

VO = 6 V

40

40

mA

† All typical values are at TA = 25

°

C.

total device

PARAMETER

TEST CONDITIONS

TL5001Q,

TL5001M

TL5001AQ,

TL5001AM

UNIT

PARAMETER

TEST CONDITIONS

MIN

TYP†

MAX

MIN

TYP†

MAX

UNIT

Standby supply current

Off state

TA = MIN to MAX

1

1.5

1

1.5

mA

Average supply current

TA = MIN to MAX

Rt = 100 k

1.4

2.1

1.4

2.1

mA

† All typical values are at TA = 25

°

C.

background image

TL5001, TL5001A

PULSE-WIDTH-MODULATION CONTROL CIRCUITS

SLVS084E – APRIL 1994 – REVISED OCTOBER 1999

12

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

PARAMETER MEASUREMENT INFORMATION

2.3 V

SCP Timing Period

3 V

DTC

OSC

COMP

1 V

0 V

PWM/DTC

Comparator

OUT

SCP

Comparator 1

SCP

SCP

Comparator 2

VCC

1.5 V

NOTE A: The waveforms show timing characteristics for an intermittent short circuit and a longer short circuit that is sufficient to activate SCP.

Figure 4. PWM Timing Diagram

background image

TL5001, TL5001A

PULSE-WIDTH-MODULATION CONTROL CIRCUITS

SLVS084E – APRIL 1994 – REVISED OCTOBER 1999

13

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 5

100 k

10 k

1 M

10 k

100 k

1 M

VCC = 6 V

DT Resistance = Rt

TA = 25

°

C

Rt – Timing Resistance – 

OSCILLATOR FREQUENCY

vs

TIMING RESISTANCE

 – Oscillator Frequency – Hz

osc

Figure 6

94

92

90

88

– 50

– 25

0

96

98

100

25

50

75

100

TA – Ambient Temperature – 

°

C

OSCILLATION FREQUENCY

vs

AMBIENT TEMPERATURE

 – Oscillation Frequency – kHz

osc

VCC = 6 V

Rt = 100 k

DT Resistance = 100 k

Figure 7

REFERENCE OUTPUT VOLTAGE

vs

POWER-SUPPLY VOLTAGE

– Reference Output V

oltage – V

V

ref

VCC – Power-Supply Voltage – V

1

0.8

0.4

0.2

0

1.8

0.6

0

1

2

3

4

5

6

1.4

1.2

1.6

2

7

8

9

10

TA = 25

°

C

FB and COMP

Connected Together

Figure 8

– Reference Output V

oltage Fluctuation – %

TA – Ambient Temperature – 

°

C

V

ref

REFERENCE OUTPUT VOLTAGE FLUCTUATION

vs

AMBIENT TEMPERATURE

ÏÏÏÏÏÏÏÏÏÏÏÏ

ÏÏÏÏÏÏÏÏÏÏÏÏ

ÏÏÏÏÏÏÏÏÏÏÏÏ

ÏÏÏÏÏÏÏÏÏÏÏÏ

ÏÏÏÏÏÏÏÏÏÏÏÏ

ÏÏÏÏÏÏÏÏÏÏÏÏ

ÏÏÏÏÏÏÏÏÏÏÏÏ

ÏÏÏÏÏÏÏÏÏÏÏÏ

ÏÏÏÏÏÏÏÏÏÏÏÏ

ÏÏÏÏÏÏÏÏÏÏÏÏ

ÏÏÏÏÏÏÏÏÏÏÏÏ

– 0.2

– 0.4

– 0.8

– 50

– 25

0

0.2

0.4

0.6

25

50

75

100

0

VCC = 6 V

FB and COMP 

Connected Together

– 0.6

background image

TL5001, TL5001A

PULSE-WIDTH-MODULATION CONTROL CIRCUITS

SLVS084E – APRIL 1994 – REVISED OCTOBER 1999

14

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 9

1

0.5

0

2

1.5

0

10

20

30

40

– 

A

verage Supply Current – mA

VCC – Power-Supply Voltage – V

Rt = 100 k

TA = 25 

°

C

AVERAGE SUPPLY CURRENT

vs

POWER-SUPPLY VOLTAGE

I CC

Figure 10

1

0.9

0.8

0

– 50

– 25

0

– 

A

verage Supply Current – mA

1.1

1.2

1.3

25

50

75

100

TA – Ambient Temperature – 

°

C

VCC = 6 V

Rt = 100 k

DT Resistance = 100 k

I CC

AVERAGE SUPPLY CURRENT

vs

AMBIENT TEMPERATURE

Figure 11

1.5

1.2

0.6

0.3

0

1.8

0.9

10 k

100 k

1 M

10 M

PWM T

riangle 

W

ave 

Amplitude 

V

oltage – V

fosc – Oscillator Frequency – Hz

Voscmin (zero duty cycle)

VCC = 6 V

TA = 25 

°

C

PWM TRIANGLE WAVE AMPLITUDE VOLTAGE

vs

OSCILLATOR FREQUENCY

Voscmax (100% duty cycle)

Figure 12

ERROR AMPLIFIER OUTPUT VOLTAGE

vs

OUTPUT (SINK) CURRENT

– 

Error 

Amplifier Output V

oltage – V

V

O

IO – Output (Sink) Current – mA

1.5

1

0.5

0

0

0.2

0.4

2

2.5

3

0.6

VCC = 6 V

VI(FB) = 1.2 V

TA = 25 

°

C

background image

TL5001, TL5001A

PULSE-WIDTH-MODULATION CONTROL CIRCUITS

SLVS084E – APRIL 1994 – REVISED OCTOBER 1999

15

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 13

1.5

1

0.5

0

0

20

40

– 

Error 

Amplifier Output V

oltage – V

2

2.5

3

60

80

100

120

V

O

IO – Output (Source) Current – 

µ

A

VCC = 6 V

VI(FB) = 0.8 V

TA = 25 

°

C

ERROR AMPLIFIER OUTPUT VOLTAGE

vs

OUTPUT (SOURCE) CURRENT

Figure 14

2.43

2.42

2.41

2.40

– 50

– 25

0

– 

Error 

Amplifier Output V

oltage – V

2.44

2.45

2.46

25

50

75

100

V

O

TA – Ambient Temperature – 

°

C

VCC = 6 V

VI(FB) = 0.8 V

No Load

ERROR AMPLIFIER OUTPUT VOLTAGE

vs

AMBIENT TEMPERATURE

Figure 15

180

160

140

120

– 50

– 25

0

– 

Error 

Amplifier Output V

oltage – mV

200

220

240

25

50

75

100

V

O

TA – Ambient Temperature – 

°

C

VCC = 6 V

VI(FB) = 1.2 V

No Load

ERROR AMPLIFIER OUTPUT VOLTAGE

vs

AMBIENT TEMPERATURE

Figure 16

30

20

0

– 10

– 20

40

10

10 k

100 k

1 M

10 M

– 

Error 

Amplifier Closed-Loop Gain – dB

fosc – Oscillator  Frequency – Hz

VCC = 6 V

TA = 25 

°

C

A

V

φ

AV

ERROR AMPLIFIER CLOSED-LOOP GAIN AND

PHASE SHIFT

vs

OSCILLATOR FREQUENCY

– 180

°

– 210

°

– 240

°

– 270

°

– 300

°

– 330

°

– 360

°

background image

TL5001, TL5001A

PULSE-WIDTH-MODULATION CONTROL CIRCUITS

SLVS084E – APRIL 1994 – REVISED OCTOBER 1999

16

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 17

60

40

20

0

0

0.5

1

80

100

120

1.5

2

DTC Voltage – V

OUTPUT DUTY CYCLE

vs

DTC VOLTAGE

Output Duty Cycle – %

VCC = 6 V

Rt = 100 k

TA = 25 

°

C

Figure 18

6

4

2

0

0

20

40

      – SCP

 T

ime-Out 

Period 

– 

ms

8

10

12

60

80

100

120

VCC = 6 V

Rt = 100 k

DT Resistance = 200 k

TA = 25 

°

C

CSCP – SCP Capacitance – nF

t SCP

SCP TIME-OUT PERIOD

vs

SCP CAPACITANCE

Figure 19

– 30

– 20

– 10

0

0

– 10

– 20

– DTC Output Current –

– 40

– 50

– 60

– 30

– 40

– 50

– 60

DT Voltage = 1.3 V

TA = 25 

°

C

IO – RT Output Current – 

µ

A

A

µ

I O(DT)

DTC OUTPUT CURRENT

vs

RT OUTPUT CURRENT

Figure 20

1

0.5

0

2

1.5

0

5

10

15

20

– Output Saturation V

oltage – V

IO – Output (Sink) Current – mA

V

CE

VCC = 6 V

TA = 25 

°

C

OUTPUT SATURATION VOLTAGE

vs

OUTPUT (SINK) CURRENT

background image

TL5001, TL5001A

PULSE-WIDTH-MODULATION CONTROL CIRCUITS

SLVS084E – APRIL 1994 – REVISED OCTOBER 1999

17

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

APPLICATION INFORMATION

U1

TL5001/A

FB

COMP

VO

DTC

RT

GND

C1

100 

µ

F

10 V

VI

5 V

+

R1

470 

SCP

VCC

L1

20 

µ

H

C2

100 

µ

F

10 V

3.3 V

GND

+

CR1

MBRS140T3

Q1

TPS1101

C6

0.012 

µ

F

R4

5.1 k

R5

7.50 k

1%

R2

56 k

R3

43 k

R6

3.24 k

1%

C5

0.1 

µ

F

C4

µ

F

C3

0.1 

µ

F

GND

8

7

6

5

2

1

3

4

Partial Bill of Materials:

U1

TL5001/A

Texas Instruments

Q1

TPS1101

Texas Instruments

LI

CTX20-1 or

Coiltronics

23 turns of #28 wire on

Micrometals No. T50-26B core

C1

TPSD107M010R0100

AVX

C2

TPSD107M010R0100

AVX

CR1

MBRS140T3

Motorola

R7

2.0 k

C7

0.0047 

µ

F

+

NOTES: A. Frequency = 200 kHz

B. Duty cycle = 90% max

C. Soft-start time constant (TC) = 5.6 ms

D. SCP TC = 70 msA

Figure 21. Step-Down Converter

background image

TL5001, TL5001A

PULSE-WIDTH-MODULATION CONTROL CIRCUITS

SLVS084E – APRIL 1994 – REVISED OCTOBER 1999

18

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

MECHANICAL DATA

D (R-PDSO-G**)    

PLASTIC SMALL-OUTLINE PACKAGE

14 PIN SHOWN

4040047 / D 10/96

0.228 (5,80)

0.244 (6,20)

0.069 (1,75) MAX

0.010 (0,25)

0.004 (0,10)

1

14

0.014 (0,35)

0.020 (0,51)

A

0.157 (4,00)

0.150 (3,81)

7

8

0.044 (1,12)

0.016 (0,40)

Seating Plane

0.010 (0,25)

PINS **

0.008 (0,20) NOM

A  MIN

A  MAX

DIM

Gage Plane

0.189

(4,80)

(5,00)

0.197

8

(8,55)

(8,75)

0.337

14

0.344

(9,80)

16

0.394

(10,00)

0.386

0.004 (0,10)

M

0.010 (0,25)

0.050 (1,27)

0

°

– 8

°

NOTES: B. All linear dimensions are in inches (millimeters).

C. This drawing is subject to change without notice.

D. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).

E. Falls within JEDEC MS-012

background image

TL5001, TL5001A

PULSE-WIDTH-MODULATION CONTROL CIRCUITS

SLVS084E – APRIL 1994 – REVISED OCTOBER 1999

19

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

MECHANICAL DATA

FK (S-CQCC-N**)     

LEADLESS CERAMIC CHIP CARRIER

4040140 / C 11/95

28 TERMINALS SHOWN

B

0.358

(9,09)

MAX

(11,63)

0.560

(14,22)

0.560

0.458

0.858

(21,8)

1.063

(27,0)

(14,22)

A

NO. OF

MIN

MAX

0.358

0.660

0.761

0.458

0.342

(8,69)

MIN

(11,23)

(16,26)

0.640

0.740

0.442

(9,09)

(11,63)

(16,76)

0.962

1.165

(23,83)

0.938

(28,99)

1.141

(24,43)

(29,59)

(19,32)

(18,78)

**

20

28

52

44

68

84

0.020 (0,51)

TERMINALS

0.080 (2,03)

0.064 (1,63)

(7,80)

0.307

(10,31)

0.406

(12,58)

0.495

(12,58)

0.495

(21,6)

0.850

(26,6)

1.047

0.045 (1,14)

0.045 (1,14)

0.035 (0,89)

0.035 (0,89)

0.010 (0,25)

12

13

14

15

16

18

17

11

10

8

9

7

5

4

3

2

0.020 (0,51)

0.010 (0,25)

6

1

28

26

27

19

21

B SQ

A SQ

22

23

24

25

20

0.055 (1,40)

0.045 (1,14)

0.028 (0,71)

0.022 (0,54)

0.050 (1,27)

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. This package can be hermetically sealed with a metal lid.

D. The terminals are gold-plated.

E. Falls within JEDEC MS-004

background image

MECHANICAL DATA

 

 

 

MCER001A – JANUARY 1995 – REVISED JANUARY 1997

20

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

MECHANICAL DATA

JG (R-GDIP-T8)

CERAMIC DUAL-IN-LINE

0.310 (7,87)

0.290 (7,37)

0.014 (0,36)

0.008 (0,20)

Seating Plane

4040107/C 08/96

5

4

0.065 (1,65)

0.045 (1,14)

8

1

0.020 (0,51) MIN

0.400 (10,16)

0.355 (9,00)

0.015 (0,38)

0.023 (0,58)

0.063 (1,60)

0.015 (0,38)

0.200 (5,08) MAX

0.130 (3,30) MIN

0.245 (6,22)

0.280 (7,11)

0.100 (2,54)

0

°

–15

°

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. This package can be hermetically sealed with a ceramic lid using glass frit.

D. Index point is provided on cap for terminal identification.

E. Falls within MIL STD 1835 GDIP1-T8

background image

MECHANICAL DATA

 

 

 

MCER001A – JANUARY 1995 – REVISED JANUARY 1997

21

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

MECHANICAL INFORMATION

P (R-PDIP-T8)  

PLASTIC DUAL-IN-LINE PACKAGE

4040082 / B 03/95

0.310 (7,87)

0.290 (7,37)

0.010 (0,25) NOM

0.400 (10,60)

0.355 (9,02)

5

8

4

1

0.020 (0,51) MIN

0.070 (1,78) MAX

0.240 (6,10)

0.260 (6,60)

0.200 (5,08) MAX

0.125 (3,18) MIN

0.015 (0,38)

0.021 (0,53)

Seating Plane

M

0.010 (0,25)

0.100 (2,54)

0

°

– 15

°

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Falls within JEDEC MS-001

background image

MECHANICAL DATA

 

 

 

MCER001A – JANUARY 1995 – REVISED JANUARY 1997

22

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

background image

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue

any product or service without notice, and advise customers to obtain the latest version of relevant information

to verify, before placing orders, that information being relied on is current and complete. All products are sold

subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those

pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in

accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent

TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily

performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF

DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL

APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR

WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER

CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO

BE FULLY AT THE CUSTOMER’S RISK.

In order to minimize risks associated with the customer’s applications, adequate design and operating

safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent

that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other

intellectual property right of TI covering or relating to any combination, machine, or process in which such

semiconductor products or services might be or are used. TI’s publication of information regarding any third

party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

Copyright 

©

 1999, Texas Instruments Incorporated