background image

1

Features

S a f e m a n a g e m e n t o f f a s t

charge for NiCd, NiMH, or Li-

Ion battery packs

High-frequency switching con-

troller for efficient and simple

charger design

Pre-charge qualification for

detecting shorted, damaged, or

overheated cells

Fast-charge termination by

∆T/∆t

m i n i m u m

c u r r e n t

(Li-Ion), maximum tempera-

ture, and maximum charge

time

Selectable top-off mode for

achieving maximum capacity in

NiMH batteries

Programmable trickle-charge

mode for reviving deeply dis-

charged batteries and for post-

charge maintenance

Built-in battery removal and

insertion detection

S l e e p m o d e f o r l o w p o w e r

consumption

General Description

The bq2000T is a programmable,

monolithic IC for fast-charge manage-

ment of nickel cadmium (NiCd),

nickel metal-hydride (NiMH), or lith-

ium-ion (Li-Ion) batteries in single- or

multi-chemistry applications. The

bq2000T detects the battery chemis-

try and proceeds with the optimal

charging and termination algorithms.

This process eliminates undesirable

undercharged or overcharged condi-

tions and allows accurate and safe

termination of fast charge.

Depending on the chemistry, the

bq2000T provides a number of

charge termination criteria:

n

Rate of temperature rise,

∆T/∆t (for

NiCd and NiMH)

n

Minimum charging current (for

Li-Ion)

n

Maximum temperature

n

Maximum charge time

For safety, the bq2000T inhibits fast

charge until the battery voltage and

temperature are within user-defined

limits. If the battery voltage is below

t h e l o w - v o l t a g e t h r e s h o l d , t h e

bq2000T uses trickle-charge to

condition the battery.

For NiMH

batteries, the bq2000T provides an

optional top-off charge to maximize

the battery capacity.

The integrated high-frequency com-

parator allows the bq2000T to be the

basis for a complete, high-efficiency

power-conversion circuit for both

nickel-based and lithium-based

chemistries.

bq2000T

SNS

Current-sense input

V

SS

System ground

LED

Charge-status

output

BAT

Battery-voltage

input

1

PN-2000.eps

8-Pin DIP or Narrow SOIC

or TSSOP

2

3

8

7

6

5

SNS

LED

BAT

VSS

MOD

VCC

TS

RC

Pin Connections

Pin Names

Programmable Multi-Chemistry

Fast-Charge Management IC

SLUS149A–FEBRUARY 2000

TS

Temperature-sense

input

RC

Timer-program input

V

CC

Supply-voltage input

MOD

Modulation-control

output

background image

2

Pin Descriptions

SNS

Current-sense input

Enables the bq2000T to sense the battery

current via the voltage developed on this pin

by an external sense-resistor connected in

series with the battery pack

V

SS

System Ground

LED

Charge-status output

Open-drain output that indicates the charg-

ing status by turning on, turning off, or

flashing an external LED

BAT

Battery-voltage input

Battery-voltage sense input. A simple resistive

divider, across the battery terminals, generates

this input.

TS

Temperature-sense input

Input for an external battery-temperature

monitoring circuit. An external resistive di-

vider network with a negative tempera-

ture-coefficient thermistor sets the lower

and upper temperature thresholds.

RC

Timer-program input

RC input used to program the maximum

charge-time, hold-off period, and trickle

rate during the charge cycle, and to disable

or enable top-off charge

V

CC

Supply-voltage input

MOD

Modulation-control output

Push-pull output that controls the charging

current to the battery. MOD switches high

to enable charging current to flow and low to

inhibit charging- current flow.

Functional Description

The bq2000T is a versatile, multi-chemistry battery-

charge control device. See Figure 1 for a functional block

diagram and Figure 2 for the state diagram.

bq2000T

BD2000T.eps

Voltage

Reference

Internal

OSC

Clock

Phase

Generator

ADC

OSC

SNS

TS

MOD

RC

BAT

LED

V

CC

V

SS

Timer

   

∆T/∆t

ALU

Voltage

Comparator

Voltage

Comparator

Charge

Control

Figure 1. Functional Block Diagram

background image

3

bq2000T

Charge

Initialization

4.0V < V

CC

 < 6.0V

Sleep

Mode

Charge

Suspended

Battery

Conditioning

Current

Regulation

Voltage

Regulation

Current Taper

or

Time = MTO

Time < MTO

and

V

BAT

 > V

MCV

Maintenance

Charge

Done

Top-Off

Yes

No

V

CC

 Reset or Battery Replacement or Capacity Depletion (Li-Ion)

V

CC

Reset

V

BAT

 > V

MCV

Time = MTO or

V

TS

 < V

TCO

∆T/∆t (after hold-off period),

or V

TS

 < V

TCO

 or 

Time = MTO

Battery Voltage

(checked at all times)

Battery Temperature

(checked at all times)

Top-Off

Selected?

V

BAT

 < V

SLP

V

BAT

 < V

MCV

V

TS

 > V

HTF

V

BAT 

< V

LBAT 

or

V

TS 

> V

LTF

V

LBAT 

< V

BAT 

< V

MCV

 and

V

HTF 

< V

TS 

< V

LTF

V

LBAT 

< V

BAT 

< V

MCV

 and

V

HTF 

< V

TS 

< V

LTF

V

TS

 < V

HTF

V

SLP

 < V

BAT

 < V

CC

 

V

MCV

 < V

BAT

 < V

SLP

 

SD2000T.eps

V

BAT

 > V

MCV

Figure 2. State Diagram

background image

Initiation and Charge Qualification

The bq2000T initiates a charge cycle when it detects

n

Application of power to V

CC

n

Battery replacement

n

Exit from sleep mode

n

Capacity depletion (Li-Ion only)

Immediately following initiation, the IC enters a

charge-qualification mode. The bq2000T charge qualifi-

cation is based on battery voltage and temperature. If

voltage on pin BAT is less than the internal threshold,

V

LBAT

, the bq2000T enters the charge-pending state.

This condition indicates the possiblility of a defective or

shorted battery pack. In an attempt to revive a fully

depleted pack, the bq2000T enables the MOD pin to

trickle-charge at a rate of once every 1.0s. As explained

in the section “Top-Off and Pulse-Trickle Charge,” the

trickle pulse-width is user-selectable and is set by the

value of the resistance connected to pin RC.

During this period, the LED pin blinks at a 1Hz rate,

indicating the pending status of the charger.

Similarly, the bq2000T suspends fast charge if the battery

temperature is outside the V

LTF

to V

HTF

range. (See Table

4.) For safety reasons, however, it disables the pulse

trickle, in the case of a battery over-temperature condition

(i.e., V

TS

< V

HTF

). Fast charge begins when the battery

temperature and voltage are valid.

Battery Chemistry

The bq2000T detects the battery chemistry by monitor-

ing the battery-voltage profile during fast charge. If the

voltage on BAT input rises to the internal V

MCV

refer-

ence, the IC assumes a Li-Ion battery. Otherwise the

bq2000T assumes NiCd/NiMH chemistry.

As shown in Figure 6, a resistor voltage-divider between

the battery pack’s positive terminal and V

SS

scales the

b a t t e r y v o l t a g e m e a s u r e d a t p i n BAT. I n a

mixed-chemistry design, a common voltage-divider is

used as long as the maximum charge voltage of the

nickel-based pack is below that of the Li-Ion pack. Oth-

erwise, different scaling is required.

Once the chemistry is determined, the bq2000T

completes the fast charge with the appropriate charge

algorithm (Table 1). The user can customize the

algorithm by programming the device using an external

resistor and a capacitor connected to the RC pin, as

discussed in later sections.

NiCd and NiMH Batteries

Following qualification, the bq2000T fast-charges NiCd

or NiMH batteries using a current-limited algorithm.

During the fast-charge period, it monitors charge time,

temperature, and voltage for adherence to the termina-

tion criteria. This monitoring is further explained in

later sections. Following fast charge, the battery is

topped off, if top-off is selected. The charging cycle ends

4

bq2000T

GR2000CA.eps

I

MAX

I

MIN

Trickle

V

LBAT

V

MCV

Current

Voltage

Qualification

Time

Phase 1

Phase 2

Fast    Charge

Voltage

Current

Figure 3. Lithium-Ion Charge Algorithm

background image

with a trickle maintenance-charge that continues as

long as the voltage on pin BAT remains below V

MCV

.

Lithium-Ion Batteries

The bq2000T uses a two-phase fast-charge algorithm for

Li-Ion batteries (Figure 3). In phase one, the bq2000T

regulates constant current until V

BAT

rises to V

MCV

. The

bq2000T then moves to phase two, regulates the battery

with constant voltage of V

MCV

, and terminates when the

charging current falls below the I

MIN

threshold. A new

charge cycle is started if the cell voltage falls below the

V

RCH

threshold.

During the current-regulation phase, the bq2000T

monitors charge time, battery temperature, and battery

voltage for adherence to the termination criteria. During

the final constant-voltage stage, in addition to the

charge time and temperature, it monitors the charge

current as a termination criterion. There is no

post-charge maintenance mode for Li-Ion batteries.

Charge Termination

Maximum Charge Time (NiCD, NiMH, and

Li-Ion)

The bq2000T sets the maximum charge-time through

pin RC. With the proper selection of external resistor

and capacitor, various time-out values may be achieved.

Figure 4 shows a typical connection.

The following equation shows the relationship between

the R

MTO

and C

MTO

values and the maximum charge

time (MTO) for the bq2000T:

MTO = R

MTO

∗ C

MTO

∗ 35,988

MTO is measured in minutes, R

MTO

in ohms, and C

MTO

in farads. (Note: R

MTO

and C

MTO

values also determine

other features of the device. See Tables 2 and 3 for de-

tails.)

For Li-Ion cells, the bq2000T resets the MTO when the

battery reaches the constant-voltage phase of the

charge. This feature provides the additional charge time

required for Li-Ion cells.

Maximum Temperature (NiCd, NiMH, Li-Ion)

A negative-coefficient thermistor, referenced to V

SS

and

placed in thermal contact with the battery, may be used

as a temperature-sensing device. Figure 5 shows a typi-

cal temperature-sensing circuit.

During fast charge, the bq2000T compares the battery

temperature to an internal high-temperature cutoff

threshold, V

TCO

. As shown in Table 4, high-temperature

termination occurs when voltage at pin TS is less than

this threshold.

T/t (NiCd, NiMH)

When fast charging, the bq2000T monitors the voltage

at pin TS for rate of temperature change detection,

∆T/∆t. The bq2000T samples the voltage at the TS pin

every 16s and compares it to the value measured 2 sam-

ples earlier. This feature terminates fast charge if this

voltage declines at a rate of

V

161

V

Min

CC





Figure 5 shows a typical connection diagram.

Minimum Current (Li-Ion Only)

The bq2000T monitors the charging current during the

voltage-regulation phase of Li-Ion batteries. Fast charge

is terminated when the current is tapered off to 7% of

the maximum charging current. Please note that this

threshold is different for the bq2000.

Initial Hold-Off Period

The values of the external resistor and capacitor con-

nected to pin RC set the initial hold-off period. During

this period, the bq2000T avoids early termination by

disabling the

∆T/∆t feature. This period is fixed at the

5

Battery Chemistry

Charge Algorithm

NiCd or NiMH

1. Charge qualification

2. Trickle charge, if required

3. Fast charge (constant current)

4. Charge termination (

∆T/∆t, time)

5. Top-off (optional)

6. Trickle charge

Li-Ion

1. Charge qualification

2. Trickle charge, if required

3. Two-step fast charge (constant current followed by constant voltage)

4. Charge termination (minimum current, time)

Table 1. Charge Algorithm

bq2000T

background image

6

bq2000T

F2000TTMC.eps

bq2000T

2

7

Battery

Pack

5

R

T2

R

T1

V

SS

V

CC

V

CC

TS

N

T

C

Figure 5. Temperature Monitoring Configuration

            F2000T  RCI.eps

bq2000T

2

V

CC

RC

7

6

C

MTO

R

MTO

V

SS

Figure 4. Typical Connection for the RC Input

F2000TBVD.eps

BAT+

bq2000T

2

4

R

B1

R

B2

V

SS

BAT

Figure 6. Battery Voltage Divider

background image

programmed value of the maximum charge time divided

by 32.

hold-off period =

maximum time - out

32

Top-Off and Pulse-Trickle Charge

An optional top-off charge is available for NiCd or NiMH

batteries. Top-off may be desirable on batteries that

have a tendency to terminate charge before reaching full

capacity. To enable this option, the capacitance value of

C

MTO

connected to pin RC (Figure 4) should be greater

than 0.13

µF, and the value of the resistor connected to

this pin should be less than 15k

Ω. To disable top-off, the

capacitance value should be less than 0.07

µF. The toler-

ance of the capacitor needs to be taken into account in

component selection.

Once enabled, the top-off is performed over a period

equal to the maximum charge time at a rate of

1

16

that

of fast charge.

Following top-off, the bq2000T trickle-charges the bat-

tery by enabling the MOD to charge at a rate of once ev-

ery 1.0 second. The trickle pulse-width is user-selectable

and is set by the value of the resistor R

MTO

, which is on

pin RC. Figure 7 shows the relationship between the

trickle pulse-width and the value of R

MTO

. The typical

tolerance of the pulsewidth below 150k

Ω is ±10%.

During top-off and trickle-charge, the bq2000T monitors

battery voltage and temperature. These functions are

suspended if the battery voltage rises above the

maximum cell voltage (V

MCV

) or if the temperature

exceeds the high-temperature fault threshold (V

HTF

).

Charge Current Control

The bq2000T controls the charge current through the

MOD output pin. The current-control circuit supports a

switching-current regulator with frequencies up to

500kHz. The bq2000T monitors charge current at the

SNS input by the voltage drop across a sense-resistor,

R

SNS

, in series with the battery pack. See Figure 9 for a

typical current-sensing circuit. R

SNS

is sized to provide

the desired fast-charge current (I

MAX

):

I

MAX

=

0.05

R

SNS

If the voltage at the SNS pin is greater than V

SNSLO

or

less than V

SNSHI

, the bq2000T switches the MOD output

high to pass charge current to the battery. When the

SNS voltage is less than V

SNSLO

or greater than V

SNSHI

,

the bq2000T switches the MOD output low to shut off

charging current to the battery. Figure 8 shows a typical

multi-chemistry charge circuit.

Voltage Input

As shown in Figure 6, a resistor voltage-divider between

the battery pack’s positive terminal and V

SS

scales the

battery voltage measured at pin BAT.

For Li-Ion battery packs, the resistor values R

B1

and

R

B2

are calculated by the following equation:

R

R

N

V

V

B1

B2

CELL

MCV

=





− 1

where N is the number of cells in series and V

CELL

is the

manufacturer-specified charging voltage. The end-to-end

input impedance of this resistive divider network should

be at least 200k

Ω and no more than 1MΩ.

7

bq2000T

1

2

4

6

8

10

50

100

150

200

250

2

3

4

20

40

60

Pulse

width—ms

R

MTO

—k

80

100

120

140

160

2000PNvB3.eps

Shows Tolerance

Figure 7. Relationship Between Trickle Pulse-Width and Value of R

MTO

background image

8

bq2000T

BAT+

Q1

FMMT718

D2

ZHCS1000

L1

47UH

C8

1000PF

R9

120 OHMS

Q2

MMBT3904LT1

C6

47UF

D5

MMSD914LT

D3

MMSD914LT

D4

S1A

DC+

R7

1K

D1

RED

R2

2K

C3

10UF

D6

BZT52-C5V1

R1

100K

C4

0.0022UF

VCC

C7

4.7PF

C9

0.33UF

RC

6

LED

  3

BAT

  4

VSS

  2

TS

5

VCC

7

SNS

  1

MOD

8

U1

bq2000T

Q3

MMBT3904LT1

R8

220 OHMS

R13

10.5K

R4

210K

C5

10UF

BAT -

THERM

CHEMISTRY

R5

Pn1031a02.eps

200K

R6

221K

R12

100K

R14

23.2K

C1

0.1

R11

6.81K

C10

0.01UF

C2

0.1

R10

1.1K

R3

0.05 OHM

NOTES:    1. For Li-Ion, the CHEMISTRY is left floating.

                     For NiCd/NiMH, the CHEMISTRY is tied to BAT-

2. DC input voltage: 9–16V

4. L1: 3L Global P/N PKSMD-1005-470K-1A

3. Charge current: 1A

Figure 8. Single-Cell Li-Ion, Three-Cell NiCd/NiMH 1A Charger

background image

A NiCd or NiMH battery pack consisting of N se-

ries-cells may benefit by the selection of the R

B1

value to

be N-1 times larger than the R

B2

value.

In a mixed-chemistry design, a common voltage-divider

is used as long as the maximum charge voltage of the

nickel-based pack is below that of the Li-Ion pack. Oth-

erwise, different scaling is required.

Temperature Monitoring

The bq2000T measures the temperature by the voltage

at the TS pin. This voltage is typically generated by a

negative-temperature-coefficient thermistor. The

bq2000T compares this voltage against its internal

threshold voltages to determine if charging is safe.

These thresholds are the following:

n

High-temperature cutoff voltage: V

TCO

= 0.225

∗ V

CC

This

voltage

corresponds

to

the

maximum

temperature (TCO) at which fast charging is allowed.

The bq2000T terminates fast charge if the voltage on

pin TS falls below V

TCO

.

n

High-temperature fault voltage: V

HTF

= 0.25

∗ V

CC

This

voltage corresponds to the temperature (HTF) at which

fast charging is allowed to begin.

n

Low-temperature fault voltage: V

LTF

= 0.5

∗ V

CC

This voltage corresponds to the minimum temperature

9

bq2000T

Parameter

Value

Maximum cell voltage (V

MCV

)

2V

Minimum pre-charge qualification voltage (V

LBAT

)

950mV

High-temperature cutoff voltage (V

TCO

)

0.225

∗ V

CC

High-temperature fault voltage (V

HTF

)

0.25

∗ V

CC

Low-temperature fault voltage (V

LTF

)

0.5

∗ V

CC

bq2000T fast-charge maximum time out (MTO)

R

MTO

∗ C

MTO

∗ 35,988

Fast-charge charging current (I

MAX

)

0.05/R

SNS

Hold-off period

MTO/32

Top-off charging current (optional)

I

MAX

/16

Top-off period (optional)

MTO

Trickle-charge frequency

1Hz

Trickle-charge pulse-width

See Figure 7

Table 2. Summary of NiCd or NiMH Charging Characteristics

Parameter

Value

Maximum cell voltage (V

MCV

)

2V

Minimum pre-charge qualification voltage (V

LBAT

)

950mV

High-temperature cutoff voltage (V

TCO

)

0.225

∗ V

CC

High-temperature fault voltage (V

HTF

)

0.25

∗ V

CC

Low-temperature fault voltage (V

LTF

)

0.5

∗ V

CC

bq2000T fast-charge maximum time-out (MTO)

2

∗ R

MTO

∗ C

MTO

∗ 35,988

Fast-charge charging current (I

MAX)

0.05/R

SNS

Hold-off period

MTO/32

Minimum current (for fast-charge termination)

I

MAX

/14

Trickle-charge frequency (before fast charge only)

1Hz

Trickle-charge pulse-width (before fast charge only)

See Figure 7

Table 3. Summary of Li-Ion Charging Characteristics

background image

(LTF) at which fast charging or top-off is allowed. If the

voltage on pin TS rises above V

LTF,

the bq2000T

suspends fast charge or top-off but does not terminate

charge. When the voltage falls back below V

LTF,

fast

charge or top-off resumes from the point where

suspended. Trickle-charge is allowed during this

condition.

Table 4 summarizes these various conditions.

Charge Status Display

The charge status is indicated by open-drain output

LED.

Table 5 summarizes the display output of the

bq2000T.

Sleep Mode

The bq2000T features a sleep mode for low power con-

sumption. This mode is enabled when the voltage at pin

BAT is above the low-power-mode threshold, V

SLP

. Dur-

ing sleep mode, the bq2000T shuts down all internal cir-

cuits, drives the LED output to high-impedance state,

and drives pin MOD to low. Restoring BAT below the

V

MCV

threshold initiates the IC and starts a fast-charge

cycle.

10

bq2000T

Table 5. Charge Status Display

Charge Action State

LED Status

Battery absent

High impedance

Pre-charge qualification

1Hz flash

Trickle charge (before fast charge)

1Hz flash

Fast charging

Low

Top-off or trickle (after fast charge,

NiCd, NiMH only)

High impedance

Charge complete

High impedance

Sleep mode

High impedance

Charge suspended (V

TS

> V

LTF

)

1Hz flash

Temperature

Condition

Action

V

TS

> V

LTF

Cold battery—checked at all times

Suspends fast charge or top-off and timer

Allows trickle charge—LED flashes at 1Hz rate

during pre-charge qualification and fast charge

V

HTF

< V

TS

< V

LTF

Optimal operating range

Allows charging

V

TS

< V

HTF

Hot battery—checked during charge quali-

fication and top-off and trickle-charge

Suspends fast-charge initiation, does not allow

trickle charge—LED flashes at 1Hz rate during

pre-charge qualification

V

TS

< V

TCO

Battery exceeding maximum allowable

temperature—checked at all times

Terminates fast charge or top-off

Table 4. Temperature-Monitoring Conditions

2000TCS.eps

BAT-

Power Supply ground

bq2000 ground

SNS

R

SNS

R

f

C

f

1

2

V

SS

bq2000T

Figure 9. Current-Sensing Circuit

background image

11

Absolute Maximum Ratings

Symbol

Parameter

Minimum

Maximum

Unit

Notes

V

CC

V

CC

relative to V

SS

-0.3

+7.0

V

V

T

DC voltage applied on any pin, ex-

cluding V

CC

relative to V

SS

-0.3

+7.0

V

T

OPR

Operating ambient temperature

-20

+70

°C

T

STG

Storage temperature

-40

+125

°C

T

SOLDER

Soldering temperature

-

+260

°C

10s max.

Note:

Permanent device damage may occur if Absolute Maximum Ratings are exceeded. Functional operation

should be limited to the Recommended DC Operating Conditions detailed in this data sheet. Exposure to

conditions beyond the operational limits for extended periods of time may affect device reliability.

DC Thresholds

(TA = TOPR; VCC = 5V

±20% unless otherwise specified)

Symbol

Parameter

Rating

Tolerance

Unit

Notes

V

TCO

Temperature cutoff

0.225 * V

CC

±5%

V

Voltage at pin TS

V

HTF

High-temperature fault

0.25 * V

CC

±5%

V

Voltage at pin TS

V

LTF

Low-temperature fault

0.5 * V

CC

±5%

V

Voltage at pin TS

V

MCV

Maximum cell voltage

2.00

±0.75%

V

V

BAT

> V

MCV

inhibits

fast charge

V

LBAT

Minimum cell voltage

950

±5%

mV

Voltage at pin BAT

V

THERM

TS input change for

∆T/∆t detection

V

161

CC

±25%

V/Min

V

SNSHI

High threshold at SNS, resulting in

MOD-low

50

±10

mV

Voltage at pin SNS

V

SNSLO

Low threshold at SNS, resulting in

MOD-high

-50

±10

mV

Voltage at pin SNS

V

SLP

Sleep-mode input threshold

V

CC

- 1

±0.5

V

Applied to pin BAT

V

RCH

Recharge threshold

V

MCV

- 0.1

±0.02

V

At pin BAT

bq2000T

background image

12

bq2000T

Impedance

Symbol

Parameter

Minimum

Typical

Maximum

Unit

R

BAT

Battery input impedance

10

-

-

M

R

TS

TS input impedance

10

-

-

M

R

SNS

SNS input impedance

10

-

-

M

Recommended DC Operating Conditions

(TA = TOPR)

Symbol

Condition

Minimum

Typical

Maximum

Unit

Notes

V

CC

Supply voltage

4.0

5.0

6.0

V

I

CC

Supply current

-

0.5

1

mA

Exclusive of external loads

I

CCS

Sleep current

-

-

5

µA

V

BAT

= V

SLP

V

TS

Thermistor input

0.5

-

V

CC

V

V

TS

< 0.5V prohibited

V

OH

Output high

V

CC

- 0.2

-

-

V

MOD, I

OH

= 20mA

V

OL

Output low

-

-

0.2

V

MOD, LED, I

OL

= 20mA

I

OZ

High-impedance leakage

current

-

-

5

µA

LED

I

snk

Sink current

-

-

20

mA

MOD, LED

R

MTO

Charge timer resistor

2

-

250

k

C

MTO

Charge timer capacitor

0.001

-

1.0

µF

Note:

All voltages relative to V

SS

except as noted.

Timing

(TA = TOPR; VCC = 5V

±20% unless otherwise specified)

Symbol

Parameter

Minimum

Typical

Maximum

Unit

d

MTO

MTO time-base variation

-5

-

+5

%

f

TRKL

Pulse-trickle frequency

0.9

1.0

1.1

Hz

background image

13

bq2000T

Ordering Information

bq2000T

Package Option:

PN = 8-pin narrow plastic DIP

SN = 8-pin narrow SOIC

TS = 8-pin TSSOP

Device:

bq2000T Multi-Chemistry Fast-Charge IC with

∆T/∆t Detection

Change No.

Page No.

Description

Nature of Change

1

5

Minimum current termination

Was: 14%

Is: 7%

1

3

Added state diagram

1

7

Changed capacitor value for en-

abling top-off

Was: 0.13

µF

Is: 0.26

µF

1

8

Figure 8

Schematic updated

1

10

V

TCO

, V

HTF

, V

LTF

Tolerance updated

2

9

Minimum current (for fast charge

termination)

Was: I

MAX

/7

Is: I

MAX

/14

Note:

Change 1 = May 1999 B changes to Final from Jan. 1999 Preliminary data sheet.

Change 2 = February 2000 changes from May 1999 B.

Data Sheet Revision History

background image

14

D

E1

E

C

e

L

G

B

A

A1

B1

S

8-Pin DIP (PN)

8-Pin PN (0.300" DIP)

Dimension

Inches

Millimeters

Min.

Max.

Min.

Max.

A

0.160

0.180

4.06

4.57

A1

0.015

0.040

0.38

1.02

B

0.015

0.022

0.38

0.56

B1

0.055

0.065

1.40

1.65

C

0.008

0.013

0.20

0.33

D

0.350

0.380

8.89

9.65

E

0.300

0.325

7.62

8.26

E1

0.230

0.280

5.84

7.11

e

0.300

0.370

7.62

9.40

G

0.090

0.110

2.29

2.79

L

0.115

0.150

2.92

3.81

S

0.020

0.040

0.51

1.02

8-Pin SOIC Narrow (SN)

8-Pin SN (0.150" SOIC)

Dimension

Inches

Millimeters

Min.

Max.

Min.

Max.

A

0.060

0.070

1.52

1.78

A1

0.004

0.010

0.10

0.25

B

0.013

0.020

0.33

0.51

C

0.007

0.010

0.18

0.25

D

0.185

0.200

4.70

5.08

E

0.150

0.160

3.81

4.06

e

0.045

0.055

1.14

1.40

H

0.225

0.245

5.72

6.22

L

0.015

0.035

0.38

0.89

bq2000T

background image

15

bq2000T

Dimension

Millimeters

Inches

Min.

Max.

Min.

Max.

A

-

1.10

-

0.043

A1

0.05

0.15

0.002

0.006

B

0.18

0.30

0.007

0.012

C

0.09

0.18

0.004

0.007

D

2.90

3.10

0.115

0.122

E

4.30

4.48

0.169

0.176

e

0.65BSC

0.0256BSC

H

6.25

6.50

0.246

0.256

L

0.50

0.70

0.020

0.028

Notes:

1.  Controlling dimension: millimeters. Inches shown for reference only.

2   'D' and 'E' do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15mm per side

3   Each lead centerline shall be located within ±0.10mm of its exact true position.

4.  Leads shall be coplanar within 0.08mm at the seating plane.

5   Dimension 'B' does not include dambar protrusion. The dambar protrusion(s) shall not cause the lead width

     to exceed 'B' maximum by more than 0.08mm.

6   Dimension applies to the flat section of the lead between 0.10mm and 0.25mm from the lead tip.

7   'A1' is defined as the distance from the seating plane to the lowest point of the package body (base plane).

8-Pin TSSOP ~ TS Package Suffix

background image

16

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any

product or service without notice, and advise customers to obtain the latest version of relevant information to verify,

before placing orders, that information being relied on is current and complete. All products are sold subject to the

terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty,

patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accor-

dance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems

necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, ex-

cept those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH,

PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). TI

SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR

USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI

PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK.

In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards

must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that

any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellec-

tual property right of TI covering or relating to any combination, machine, or process in which such semiconductor

products or services might be or are used. TI’s publication of information regarding any third party’s products or ser-

vices does not constitute TI’s approval, warranty or endorsement thereof.

Copyright © 

2000, Texas Instruments Incorporated