background image

Features

®

Fast charge of nickel cadmium

or nickel-metal hydride batter-

ies

®

Direct LED output displays

charge status

®

Fast-charge termination by -

V,

maximum voltage, maximum

temperature, and maximum

time

®

Internal band-gap voltage ref-

erence

®

Optional top-off charge

®

Selectable pulse trickle charge

rates

®

Low-power mode

®

8-pin 300-mil DIP or 150-mil

SOIC

General Description

The bq2002E and bq2002G Fast-

Charge ICs are low-cost CMOS bat-

tery-charge controllers providing reli-

able charge termination for both NiCd

and NiMH battery applications. Con-

trolling a current-limited or con-

stant-current supply allows the

bq2002E/G to be the basis for a cost-

effective stand-alone or system-inte-

grated charger. The bq2002E/G inte-

grates fast charge with optional top-off

and pulsed- trickle control in a single

IC for charging one or more NiCd or

NiMH battery cells.

Fast charge is initiated on application

of the charging supply or battery re-

placement. For safety, fast charge is

inhibited if the battery temperature

and voltage are outside configured

limits.

Fast charge is terminated by any of

the following:

n

Peak voltage detection (PVD)

n

Negative delta voltage (-

V)

n

Maximum voltage

n

Maximum temperature

n

Maximum time

After fast charge, the bq2002E/G op-

tionally tops-off and pulse-trickles the

battery per the pre-configured limits.

Fast charge may be inhibited using

the INH pin.

The bq2002E/G may

also be placed in low-standby-power

mode to reduce system power con-

sumption.

T h e b q 2 0 0 2 E d i f f e r s f r o m t h e

bq2002G only in that a slightly dif-

ferent set of fast-charge and top-off

time limits is available. All differ-

ences between the two ICs are illus-

trated in Table 1.

1

NiCd/NiMH Fast-Charge Management ICs

bq2002E/G

TM

Timer mode select input

LED

Charging status output

BAT

Battery voltage input

V

SS

System ground

1

PN-200201.eps

8-Pin DIP or

Narrow SOIC

2

3

8

7

6

5

TM

LED

BAT

VSS

CC

INH

VCC

TS

TS

Temperature sense input

V

CC

Supply voltage input

INH

Charge inhibit input

CC

Charge control output

Pin Connections

Pin Names

2/99

bq2002E/G Selection Guide

Part No.

LBAT

TCO

HTF

LTF

-

V

PVD

Fast Charge

t

MTO

Top-Off

Maintenance

bq2002E 0.175

V

CC

0.5

V

CC

0.6

V

CC

None

 

C/2

200

None

C/32

 

1C

80

C/16

C/32

 

2C

40

None

C/32

bq2002G 0.175

V

CC

0.5

V

CC

0.6

V

CC

None

 

C/2

160

None

C/32

 

1C

80

C/16

C/32

 

2C

40

None

C/32

background image

Pin Descriptions

TM

Timer mode input

A three-level input that controls the settings

for the fast charge safety timer, voltage ter-

mination mode, top-off, pulse-trickle, and

voltage hold-off time.

LED

Charging output status

Open-drain output that indicates the charging

status.

BAT

Battery input voltage

The battery voltage sense input. The input to

this pin is created by a high-impedance re-

sistor divider network connected between

the positive and negative terminals of the

battery.

V

SS

System ground

TS

Temperature sense input

Input for an external battery temperature

monitoring thermistor.

V

CC

Supply voltage input

5.0V

±

20% power input.

INH

Charge inhibit input

When high, INH suspends the fast charge in

progress.

When returned low, the IC re-

sumes operation at the point where initially

suspended.

CC

Charge control output

An open-drain output used to control the

charging current to the battery. CC switch-

ing to high impedance (Z) enables charging

current to flow, and low to inhibit charging

current. CC is modulated to provide top-off,

if enabled, and pulse trickle.

Functional Description

Figure 2 shows a state diagram and Figure 3 shows a

block diagram of the bq2002E/G.

Battery Voltage and Temperature

Measurements

Battery voltage and temperature are monitored for

maximum allowable values. The voltage presented on

the battery sense input, BAT, should represent a

single-cell potential for the battery under charge. A

resistor-divider ratio of

RB1

RB2

= N - 1

is recommended to maintain the battery voltage within

the valid range, where N is the number of cells, RB1 is

the resistor connected to the positive battery terminal,

and RB2 is the resistor connected to the negative bat-

tery terminal. See Figure 1.

Note: This resistor-divider network input impedance to

end-to-end should be at least 200k

and less than 1 M

.

2

bq2002E/G

Fg2002E/G01.eps

bq2002E/G

BAT

VSS

N

T

C

bq2002E/G

VCC

VCC

PACK +

TS

VSS

BAT pin connection

Thermistor connection

TM

NTC = negative temperature coefficient thermistor.

RT

R3

R4

RB1

RB2

Mid-level

setting for TM

Figure 1. Voltage and Temperature Monitoring and TM Pin Configuration

background image

3

bq2002E/G

OSC

TM

CC

LED

VCC

VSS

BAT

INH

Clock

Phase

Generator

Timing

Control

Sample

History

A to D

Converter

MCV

Check

Power

Down

TS

Bd2002CEG.eps

Voltage

Reference

Power-On

Reset

TCO

Check

HTF

Check

LBAT

Check

Charge-Control

State Machine

       

  PVD, -  V

 ALU

Figure 3. Block Diagram

Chip on

VCC       4.0V

Battery Voltage

too High?

Battery 

Temperature?

Charge

Pending

Fast

LED =

Low

SD2002C.eps

Battery Voltage

too Low?

VBAT < 2V

VTS < 0.6

VBAT > 0.175 

VBAT < 2V, and

VTS > VCC/2

 

VBAT

 > 

2V

Top-off

LED = Z

Trickle

LED =

Flash

Trickle

LED = Z

VBAT > 2V

VBAT     2V

VCC

VTS > 0.6 VCC

VCC,

0.175 VCC < VBAT

VCC

VBAT < 0.175

VBAT > 2V or

VTS < VCC/2 or

((PVD or -  V or 

Maximum Time Out)

and TM  

Low)

VBAT

VTS

Maximum Time Out

2V or

VCC/2 or

(PVD or -

Maximum Time Out)

and TM = Low

V or

Figure 2. State Diagram

background image

A ground-referenced negative temperature coefficient ther-

mistor placed near the battery may be used as a low-cost

temperature-to-voltage transducer. The temperature

sense voltage input at TS is developed using a resistor-

thermistor network between V

CC

and V

SS

. See Figure 1.

Starting A Charge Cycle

Either of two events starts a charge cycle (see Figure 4):

1. Application of power to V

CC

or

2. Voltage at the BAT pin falling through the maximum

cell voltage V

MCV

where

V

MCV

= 2V

±

5%.

If the battery is within the configured temperature and

voltage limits, the IC begins fast charge. The valid bat-

tery voltage range is V

LBAT

< V

BAT

< V

MCV

, where

4

bq2002E/G

Corre-

sponding

Fast-Charge

Rate

TM

Termination

Typical Fast-

Charge and

Top-Off

Time Limits

(minutes)

Typical PVD

and -

V

Hold-Off Time

(seconds)

Top-Off

Rate

Pulse-

Trickle

Rate

Pulse-

Trickle

Width

(ms)

Maximum

Synchro-

nized

Sampling

Period

(seconds)

bq2002E bq2002G

C/2

Mid

PVD

200

160

300

Disabled

C/32

73

18.7

1C

Low

PVD

80

80

150

C/16

C/32

37

18.7

2C

High

-

V

40

40

75

Disabled

C/32

18

9.4

Notes:

Typical conditions = 25°C, V

CC

= 5.0V

Mid = 0.5 * V

CC

±

0.5V

Tolerance on all timing is

±

12%.

Table 1. Fast-Charge Safety Time/Hold-Off/Top-Off Table

TD2002EG.eps

Fast Charging

VCC = 0

Fast Charging

CC Output

LED

Charge initiated by application of power 

Charge initiated by battery replacement 

Pulse-Trickle

Top-Off

(optional)

73ms

1.17s

1.17s

See Table 1

Figure 4. Charge Cycle Phases

background image

V

LBAT

= 0.175

V

CC

±

20%

The valid temperature range is V

TS

> V

HTF

where

V

HTF

= 0.6

V

CC

±

5%.

If the battery voltage or temperature is outside of these

limits, the IC pulse-trickle charges until the next new

charge cycle begins.

If V

MCV

< V

BAT

< V

PD

(see “Low-Power Mode”) when a

new battery is inserted, a delay of 0.35 to 0.9s is imposed

before the new charge cycle begins.

Fast charge continues until termination by one or more of

the five possible termination conditions:

n

Peak voltage detection (PVD)

n

Negative delta voltage (-

V)

n

Maximum voltage

n

Maximum temperature

n

Maximum time

PVD and -

V Termination

There are two modes for voltage termination, depending

on the state of TM. For -

V (TM = high), if V

BAT

is lower

than any previously measured value by 12mV

±

3mV, fast

charge is terminated. For PVD (TM = low or mid), a de-

crease of 2.5mV

±

2.5mV terminates fast charge. The PVD

and -

V tests are valid in the range 1V < V

BAT

< 2V.

Synchronized Voltage Sampling

Voltage sampling at the BAT pin for PVD and -

V termi-

nation may be synchronized to an external stimulus us-

ing the INH input. Low-high-low input pulses between

100ns and 3.5ms in width must be applied at the INH

pin with a frequency greater than the “maximum syn-

chronized sampling period” set by the state of the TM

pin as shown in Table 1. Voltage is sampled on the fal-

ling edge of such pulses.

If the time between pulses is greater than the synchro-

nizing period, voltage sampling “free-runs” at once every

17 seconds. A sample is taken by averaging together

voltage measurements taken 57

µ

s apart. The IC takes

32 measurements in PVD mode and 16 measurements

in -

V mode. The resulting sample periods (9.17 and

18.18ms, respectively) filter out harmonics centered

around 55 and 109Hz. This technique minimizes the ef-

fect of any AC line ripple that may feed through the

power supply from either 50 or 60Hz AC sources.

If the INH input remains high for more than 12ms, the

voltage sample history kept by the IC and used for PVD

and -

V termination decisions is erased and a new his-

tory is started. Such a reset is required when transition-

ing from free-running to synchronized voltage sampling.

The response of the IC to pulses less than 100ns in

width or between 3.5ms and 12ms is indeterminate. Tol-

erance on all timing is

±

12%.

Voltage Termination Hold-off

A hold-off period occurs at the start of fast charging.

During the hold-off time, the PVD and -

V terminations

are disabled. This avoids premature termination on the

voltage spikes sometimes produced by older batteries

when fast-charge current is first applied. Maximum

voltage and temperature terminations are not affected

by the hold-off period.

Maximum Voltage, Temperature, and Time

Any time the voltage on the BAT pin exceeds the maxi-

mum cell voltage,V

MCV

, fast charge or optional top-off

charge is terminated.

Maximum temperature termination occurs anytime the

voltage on the TS pin falls below the temperature cut-off

threshold V

TCO

where

V

TCO

= 0.5

V

CC

±

5%.

Maximum charge time is configured using the TM pin.

Time settings are available for corresponding charge

rates of C/2, 1C, and 2C. Maximum time-out termina-

tion is enforced on the fast-charge phase, then reset, and

enforced again on the top-off phase, if selected. There is

no time limit on the trickle-charge phase.

Top-off Charge

An optional top-off charge phase may be selected to

follow fast charge termination for 1C and C/2 rates.

This phase may be necessary on NiMH or other bat-

tery chemistries that have a tendency to terminate

charge before reaching full capacity. With top-off en-

abled, charging continues at a reduced rate after

fast-charge termination for a period of time selected

by the TM pin. (See Table 1.) During top-off, the CC

pin is modulated at a duty cycle of 73ms active for

every 1097ms inactive. This modulation results in an

average rate 1/16th that of the fast charge rate. Maxi-

mum voltage, time, and temperature are the only ter-

mination methods enabled during top-off.

Pulse-Trickle Charge

Pulse-trickle is used to compensate for self-discharge

while the battery is idle in the charger. The battery is

pulse-trickle charged by driving the CC pin active once

every 1.17s for the period specified in Table 1. This re-

sults in a trickle rate of C/32.

TM Pin

The TM pin is a three-level pin used to select the

charge timer, top-off, voltage termination mode, trickle

5

bq2002E/G

background image

rate, and voltage hold-off period options. Table 1 de-

scribes the states selected by the TM pin. The mid-

level selection input is developed by a resistor di-

vider between V

CC

and ground that fixes the voltage

on TM at V

CC

/2

±

0.5V. See Figure 4.

Charge Status Indication

A fast charge in progress is uniquely indicated when the

LED pin goes low. The LED pin is driven to the high-Z

state for all conditions other than fast charge. Figure 2

outlines the state of the LED pin during charge.

Charge Inhibit

Fast charge and top-off may be inhibited by using the

INH pin. When high, INH suspends all fast charge and

top-off activity and the internal charge timer.

INH

freezes the current state of LED until inhibit is removed.

Temperature monitoring is not affected by the INH pin.

During charge inhibit, the bq2002E/G continues to

pulse-trickle charge the battery per the TM selection.

When INH returns low, charge control and the charge

timer resume from the point where INH became active.

Low-Power Mode

The IC enters a low-power state when V

BAT

is driven

above the power-down threshold (V

PD

) where

V

PD

= V

CC

- (1V

±

0.5V)

Both the CC pin and the LED pin are driven to the

high-Z state. The operating current is reduced to less

than 1

µ

A in this mode. When V

BAT

returns to a value

below V

PD

, the IC pulse-trickle charges until the next

new charge cycle begins.

6

bq2002E/G

background image

7

bq2002E/G

Absolute Maximum Ratings

Symbol

Parameter

Minimum

Maximum

Unit

Notes

V

CC

V

CC

relative to V

SS

-0.3

+7.0

V

V

T

DC voltage applied on any pin

excluding V

CC

relative to V

SS

-0.3

+7.0

V

T

OPR

Operating ambient temperature

0

+70

°C

Commercial

T

STG

Storage temperature

-40

+85

°C

T

SOLDER

Soldering temperature

-

+260

°C

10 sec max.

T

BIAS

Temperature under bias

-40

+85

°C

Note:

Permanent device damage may occur if Absolute Maximum Ratings are exceeded. Functional opera-

tion should be limited to the Recommended DC Operating Conditions detailed in this data sheet. Expo-

sure to conditions beyond the operational limits for extended periods of time may affect device reliability.

DC Thresholds

(TA = 0 to 70°C; VCC

±

20%)

Symbol

Parameter

Rating

Tolerance

Unit

Notes

V

TCO

Temperature cutoff

0.5 * V

CC

±

5%

V

V

TS

V

TCO

inhibits/terminates

fast charge and top-off

V

HTF

High temperature fault

0.6

VCC

±

5%

V

V

TS

< V

HTF

inhibits fast charge

start

V

MCV

Maximum cell voltage

2

±

5%

V

V

BAT

V

MCV

inhibits/terminates

fast charge and top-off

V

LBAT

Minimum cell voltage

0.175

V

CC

±

20%

V

V

BAT

< V

LBAT

inhibits fast charge

start

-

V

BAT input change for

-

V detection

-12

±

3

mV

PVD

BAT input change for

PVD detection

-2.5

±

2.5

mV

background image

8

bq2002E/G

Recommended DC Operating Conditions

(TA = 0 to 70°C)

Symbol

Condition

Minimum

Typical

Maximum

Unit

Notes

V

CC

Supply voltage

4.0

5.0

6.0

V

V

DET

-

V, PVD  detect voltage

1

-

2

V

V

BAT

Battery input

0

-

V

CC

V

V

TS

Thermistor input

0.5

-

V

CC

V

V

TS

< 0.5V prohibited

V

IH

Logic input high

0.5

-

-

V

INH

Logic input high

V

CC

- 0.5

-

-

V

TM

V

IM

Logic input mid

V

CC

2

- 0.5

-

V

CC

2

0 5

+

.

V

TM

V

IL

Logic input low

-

-

0.1

V

INH

Logic input low

-

-

0.5

V

TM

V

OL

Logic output low

-

-

0.8

V

LED, CC, I

OL

= 10mA

V

PD

Power down

V

CC

- 1.5

-

V

CC

- 0.5

V

V

BAT

V

PD

max. powers

down bq2002E/G;

V

BAT

< V

PD

min. =

normal operation.

I

CC

Supply current

-

-

500

µ

A

Outputs unloaded,

V

CC

= 5.1V

I

SB

Standby current

-

-

1

µ

A

V

CC

= 5.1V, V

BAT

= V

PD

I

OL

LED, CC sink

10

-

-

mA

@V

OL

= V

SS

+ 0.8V

I

L

Input leakage

-

-

±

1

µ

A

INH, CC, V = V

SS

to V

CC

I

OZ

Output leakage in

high-Z state

-5

-

-

µ

A

LED, CC

Note:

All voltages relative to V

SS

.

background image

9

Impedance

Symbol

Parameter

Minimum

Typical

Maximum

Unit

R

BAT

Battery input impedance

50

-

-

M

R

TS

TS input impedance

50

-

-

M

Timing

(TA = 0 to +70°C; VCC

±

10%)

Symbol

Parameter

Minimum

Typical

Maximum

Unit

Notes

d

FCV

Time base variation

-12

-

12

%

t

DLY

Start-up delay

0.35

-

0.9

s

Starting from V

MCV

< V

BAT

< V

PD

Note:

Typical is at T

A

= 25°C, V

CC

= 5.0V.

bq2002E/G

background image

10

D

E1

E

C

e

L

G

B

A

A1

B1

S

8-Pin DIP (PN)

8-Pin PN (0.300" DIP)

Dimension

Inches

Millimeters

Min.

Max.

Min.

Max.

A

0.160

0.180

4.06

4.57

A1

0.015

0.040

0.38

1.02

B

0.015

0.022

0.38

0.56

B1

0.055

0.065

1.40

1.65

C

0.008

0.013

0.20

0.33

D

0.350

0.380

8.89

9.65

E

0.300

0.325

7.62

8.26

E1

0.230

0.280

5.84

7.11

e

0.300

0.370

7.62

9.40

G

0.090

0.110

2.29

2.79

L

0.115

0.150

2.92

3.81

S

0.020

0.040

0.51

1.02

8-Pin SOIC Narrow (SN)

8-Pin SN (0.150" SOIC)

Dimension

Inches

Millimeters

Min.

Max.

Min.

Max.

A

0.060

0.070

1.52

1.78

A1

0.004

0.010

0.10

0.25

B

0.013

0.020

0.33

0.51

C

0.007

0.010

0.18

0.25

D

0.185

0.200

4.70

5.08

E

0.150

0.160

3.81

4.06

e

0.045

0.055

1.14

1.40

H

0.225

0.245

5.72

6.22

L

0.015

0.035

0.38

0.89

bq2002E/G

background image

11

bq2002E/G

Ordering Information

bq2002E/G

Package Option:

PN = 8-pin plastic DIP

SN = 8-pin narrow SOIC

Device:

bq2002E Fast Charge IC

bq2002G Fast Charge IC

Data Sheet Revision History

Change No.

Page No.

Description

Nature of Change

1

1

Added selection guide

Notes:

Change 1 =  Feb. 1999 B changes from Sept. 1997

background image

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue

any product or service without notice, and advise customers to obtain the latest version of relevant information

to verify, before placing orders, that information being relied on is current and complete. All products are sold

subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those

pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in

accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent

TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily

performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF

DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL

APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR

WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER

CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO

BE FULLY AT THE CUSTOMER’S RISK.

In order to minimize risks associated with the customer’s applications, adequate design and operating

safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent

that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other

intellectual property right of TI covering or relating to any combination, machine, or process in which such

semiconductor products or services might be or are used. TI’s publication of information regarding any third

party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

Copyright 

©

 1999, Texas Instruments Incorporated

background image

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue

any product or service without notice, and advise customers to obtain the latest version of relevant information

to verify, before placing orders, that information being relied on is current and complete. All products are sold

subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those

pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in

accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent

TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily

performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF

DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL

APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR

WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER

CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO

BE FULLY AT THE CUSTOMER’S RISK.

In order to minimize risks associated with the customer’s applications, adequate design and operating

safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent

that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other

intellectual property right of TI covering or relating to any combination, machine, or process in which such

semiconductor products or services might be or are used. TI’s publication of information regarding any third

party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

Copyright 

©

 1999, Texas Instruments Incorporated