background image

Features

➤ Conforms to battery manufactur-

ers' charge recommendations for

cyclic and float charge

➤ Pin-selectable charge algorithms

-

Two-Step Voltage with

temperature-compensated

constant-voltage maintenance

-

Two-Step Current with

constant-rate pulsed current

maintenance

-

Pulsed Current: hysteretic,

on-demand pulsed current

➤ Pin-selectable charge termination

by maximum voltage,

2

V, mini-

mum current, and maximum

time

➤ Pre-charge qualification detects

shorted, opened, or damaged cells

and conditions battery

➤ Charging continuously qualified by

temperature and voltage limits

➤ Internal temperature-compen-

sated voltage reference

➤ Pulse-width modulation control

-

Ideal for high-efficiency

switch-mode power conversion

-

Configurable for linear or

gated current use

➤ Direct LED control outputs dis-

play charge status and fault con-

ditions

General Description

The bq2031 Lead-Acid Fast Charge

IC is designed to optimize charging

of lead-acid chemistry batteries. A

flexible pulse-width modulation

regulator allows the bq2031 to con-

trol constant-voltage, constant-

current, or pulsed-current charging.

The regulator frequency is set by an

external capacitor for design flexi-

bility. The switch-mode design keeps

power dissipation to a minimum for

high charge current applications.

A charge cycle begins when power is

applied or the battery is replaced.

For safety, charging is inhibited un-

til the battery voltage is within con-

figured limits. If the battery voltage is

less than the low-voltage threshold,

the bq2031 provides trickle-current

charging until the voltage rises into

the allowed range or an internal

t i m e r r u n s o u t a n d p l a c e s t h e

bq2031 in a Fault condition. This

procedure prevents high-current

charging of cells that are possibly

damaged or reversed. Charging is

inhibited anytime the temperature

of the battery is outside the config-

urable, allowed range. All voltage

t h r e s h o l d s

a r e

t e m p e r a t u r e -

compensated.

The bq2031 terminates fast (bulk)

charging based on the following:

I

Maximum voltage

I

Second difference of cell voltage

(

2

V)

I

Minimum current (in constant-

voltage charging)

I

Maximum time-out (MTO)

After bulk charging, the bq2031 pro-

vides temperature-compensated

maintenance (float) charging to

maintain battery capacity.

1

Lead-Acid Fast-Charge IC

TMTO

Time-out timebase input

FLOAT

State control output

BAT

Battery voltage input

VCOMP

Voltage loop comp input

ICOMP

Current loop comp input

IGSEL

Current gain select input

SNS

Sense resistor input

TS

Temperature sense input

TPWM

Regulator timebase input

1

PN203101.eps

16-Pin Narrow

DIP or SOIC

2

3

5

6

7

8

16

15

14

13

12

11

10

9

LED2/DSEL

LED1/TSEL

MOD

VCC

VSS

COM

LED3/QSEL

TPWM

TMTO

FLOAT

BAT

VCOMP

ICOMP

IGSEL

SNS

TS

LED

3

/

Charge status output 3/

QSEL

Charge algorithm select

input 1

COM

Common LED output

V

SS

System ground

V

CC

5.0V

±10% power

MOD

Modulation control

output

LED

1

/

Charge status output 1/

TSEL

Charge algorithm select

input 2

LED

2

/

Charge status output 2/

DSEL

Display select input

Pin Connections

Pin Names

SLUS156–JUNE 1999 E

bq2031

background image

Pin Descriptions

TMTO

Time-out timebase input

This input sets the maximum charge time.

The resistor and capacitor values are deter-

mined using equation 6. Figure 9 shows the

resistor/capacitor connection.

FLOAT

Float state control output

This open-drain output uses an external re-

sistor divider network to control the BAT in-

put voltage threshold (V

FLT

) for the float

charge regulation. See Figure 1.

BAT

Battery voltage input

BAT is the battery voltage sense input. This po-

tential is generally developed using a high-

impedance resistor divider network connected

between the positive and the negative terminals

of the battery. See Figure 6 and equation 2.

VCOMP

Voltage loop compensation input

This input uses an external C or R-C net-

work for voltage loop stability.

IGSEL

Current gain select input

This three-state input is used to set I

MIN

for

fast charge termination in the Two-Step

Voltage algorithm and for maintenance cur-

rent regulation in the Two-Step Current al-

gorithm. See Tables 3 and 4.

ICOMP

Current loop compensation input

This input uses an external C or R-C net-

work for current loop stability.

SNS

Charging current sense input

Battery current is sensed via the voltage de-

veloped on this pin by an external sense re-

sistor, R

SNS

, connected in series with the low

side of the battery. See equation 8.

TS

Temperature sense input

This input is for an external battery tem-

perature monitoring thermistor or probe. An

external resistor divider network sets the

lower and upper temperature thresholds.

See Figures 7 and 8 and equations 4 and 5.

TPWM

Regulation timebase input

This input uses an external timing capacitor

to ground the pulse-width modulation

(PWM) frequency. See equation 9.

COM

Common LED output

Common output for LED

1–3

. This output is

in a high-impedance state during initiali-

zation to read program inputs on TSEL,

QSEL, and DSEL.

QSEL

Charge regulation select input

With TSEL, selects the charge algorithm.

See Table 1.

MOD

Current-switching control output

MOD is a pulse-width modulated push/pull

output that is used to control the charging

current to the battery. MOD switches high

to enable current flow and low to inhibit cur-

rent flow.

LED

1–3

Charger display status 1–3 outputs

These charger status output drivers are for

the direct drive of the LED display. Display

modes are shown in Table 2. These outputs are

tri-stated during initialization so that QSEL,

TSEL, and DSEL can be read.

DSEL

Display select input

This three-level input controls the LED

1–3

charge display modes. See Table 2.

TSEL

Termination select input

With QSEL, selects the charge algorithm.

See Table 1.

V

CC

V

CC

supply

5.0V,

± 10% power

V

SS

Ground

Functional Description

The bq2031 functional operation is described in terms of:

n

Charge algorithms

n

Charge qualification

n

Charge status display

n

Voltage and current monitoring

n

Temperature monitoring

2

bq2031

background image

n

Fast charge termination

n

Maintenance charging

n

Charge regulation

Charge Algorithms

Three charge algorithms are available in the bq2031:

n

Two-Step Voltage

n

Two-Step Current

n

Pulsed Current

The state transitions for these algorithms are described

in Table 1 and are shown graphically in Figures 2

through 4. The user selects a charge algorithm by con-

figuring pins QSEL and TSEL.

Charge Qualification

The bq2031 starts a charge cycle when power is applied

while a battery is present or when a battery is inserted.

Figure 1 shows the state diagram for pre-charge qualifi-

cation and temperature monitoring. The bq2031 first

checks that the battery temperature is within the al-

lowed, user-configurable range. If the temperature is

out-of-range (or the thermistor is missing), the bq2031

enters the Charge Pending state and waits until the bat-

tery temperature is within the allowed range. Charge

Pending is annunciated by LED

3

flashing.

3

bq2031

Algorithm/State

QSEL

TSEL

Conditions

MOD Output

Two-Step Voltage

L

H/L

Note 1

-

-

Fast charge, phase 1

while V

BAT

< V

BLK

, I

SNS

= I

MAX

Current regulation

Fast charge, phase 2

while I

SNS

> I

MIN

, V

BAT

= V

BLK

Voltage regulation

Primary termination

I

SNS

= I

MIN

Maintenance

V

BAT

= V

FLT

Voltage regulation

Two-Step Current

H

L

-

-

Fast charge

while V

BAT

< V

BLK

, I

SNS

= I

MAX

Current regulation

Primary termination

V

BAT

= V

BLK

or

2

V < -8mV

Note 2

Maintenance

I

SNS

pulsed to average I

FLT

Fixed pulse current

Pulsed Current

H

H

-

-

Fast charge

while V

BAT

< V

BLK

, I

SNS

= I

MAX

Current regulation

Primary termination

V

BAT

= V

BLK

Maintenance

I

SNS

= I

MAX

after V

BAT

= V

FLT

;

I

SNS

= 0 after V

BAT

= V

BLK

Hysteretic pulsed

current

Notes:

1.

May be high or low, but do not float.

2.

A Unitrode proprietary algorithm for accumulating successive differences between samples of V

BAT

.

Table 1. bq2031 Charging Algorithms

Chip On

VCC       4.5V

Temperature

Checks On

Battery

Status?

Temperature

in Range

Temperature Out

of Range or

Thermistor Absent

Voltage

Regulation

@ VFLT +

0.25V

Bulk

Charge

Fault

LED3 = 1

MOD = 0

Charge

Pending

LED3 Flash

MOD = 0

Current

Regulation

@ICOND

Temperature Out

of Range or

Thermistor Absent

Temperature In

Range, Return

to Original State

VCELL < VLCO or

VCELL > VHCO

VCELL       VLCO or

Fail:

t = tQT1 or

VCELL > VHCO

Present

VLCO < VCELL < VHCO

ISNS < ICOND

VCELL < VMIN

FG203101.eps

Test 1

VCELL       VHCO

PASS: ISNS    ICOND

>

Test 2

PASS: VCELL    VMIN

>

Fast

Charge

VCELL < VMIN

Termination

Fail:

t = tQT2 or

VCELL < VLCO or

VCELL > VHCO

Absent

VCELL < VLCO or

VCELL > VHCO

Figure 1. Cycle Start/Battery

Qualification State Diagram

background image

Thermal monitoring continues throughout the charge

cycle, and the bq2031 enters the Charge Pending state

anytime the temperature is out of range. (There is one

exception; if the bq2031 is in the Fault state—see be-

low—the out-of-range temperature is not recognized un-

til the bq2031 leaves the Fault state.)

All timers are

suspended (but not reset) while the bq2031 is in Charge

Pending. When the temperature comes back into range,

the bq2031 returns to the point in the charge cycle

where the out-of-range temperature was detected.

When the temperature is valid, the bq2031 performs two

tests on the battery. In test 1, the bq2031 regulates a voltage

of V

FLT

+ 0.25V across the battery and observes I

SNS

. If I

SNS

does not rise to at least I

COND

within a time-out period (e.g.,

the cell has failed open), the bq2031 enters the Fault state. If

test 1 passes, the bq2031 then regulates current to I

COND

(=

I

MAX

/5) and watches V

CELL

(= V

BAT

- V

SNS

). If V

CELL

does

not rise to at least V

FLT

within a time-out period (e.g., the cell

has failed short), again the bq2031 enters the Fault state. A

hold-off period is enforced at the beginning of qualification

test 2 before the bq2031 recognizes its “pass” criterion. If this

second test passes, the bq2031 begins fast (bulk) charging.

Once in the Fault state, the bq2031 waits until V

CC

is cy-

cled or a battery insertion is detected. It then starts a new

charge cycle and begins the qualification process again.

Charge Status Display

Charge status is annunciated by the LED driver outputs

LED

1

–LED

3

. Three display modes are available in the bq2031;

the user selects a display mode by configuring pin DSEL. Table

2 shows the three modes and their programming pins.

The bq2031 does not distinguish between an over-voltage

fault and a “battery absent” condition. The bq2031 enters

the Fault state, annunciated by turning on LED

3

, when-

ever the battery is absent. The bq2031, therefore, gives an

indication that the charger is on even when no battery is

in place to be charged.

4

bq2031

Mode

Charge Action State

LED

1

LED

2

LED

3

DSEL = 0

(Mode 1)

Battery absent or over-voltage fault

Low

Low

High

Pre-charge qualification

Flash

Low

Low

Fast charging

High

Low

Low

Maintenance charging

Low

High

Low

Charge pending (temperature out of range)

X

X

Flash

Charging fault

X

X

High

DSEL = 1

(Mode 2)

Battery absent or over-voltage fault

Low

Low

High

Pre-charge qualification

High

High

Low

Fast charge

Low

High

Low

Maintenance charging

High

Low

Low

Charge pending (temperature out of range)

X

X

Flash

Charging fault

X

X

High

DSEL = Float

(Mode 3)

Battery absent or over-voltage fault

Low

Low

High

Pre-charge qualification

Flash

Flash

Low

Fast charge: current regulation

Low

High

Low

Fast charge: voltage regulation

High

High

Low

Maintenance charging

High

Low

Low

Charge pending (temperature out of range)

X

X

Flash

Charging fault

X

X

High

Notes:

1 = V

CC

; 0 = V

SS

; X = LED state when fault occurred; Flash =

1

6

s low,

1

6

s high.

In the Pulsed Current algorithm, the bq2031 annunciates maintenance when charging current is off and

fast charge whenever charging current is on.

Table 2. bq2031 Display Output Summary

background image

5

bq2031

IFLT

IMIN

ICOND

IMAX

Current

Voltage

VMIN

VFLT

VBLK

Time

Phase 1

Fast  Charge

Phase 2

Current

Voltage

Maintenance

Qualification

Figure 2. Two-Step Voltage Algorithm

ICOND

IMAX

Current

Voltage

VMIN

VFLT

VBLK

Time

Fast Charge

Maintenance

Qualification

Current

Voltage

Figure 3. Two-Step Current Algorithm

ICOND

IMAX

Current

Voltage

VMIN

VFLT

VBLK

Time

Fast Charge

Maintenance

Qualification

Current

Voltage

Figure 4. Pulsed Current Algorithm

background image

Configuring Algorithm and Display

Modes

QSEL/LED

3

, DSEL/LED

2

, and TSEL/LED

1

are bi-

directional pins with two functions; they are LED driver

pins as outputs and programming pins for the bq2031 as

inputs. The selection of pull-up, pull-down, or no pull re-

sistor programs the charging algorithm on QSEL and

TSEL per Table 1 and the display mode on DSEL per

Table 2. The bq2031 latches the program states when

any of the following events occurs:

1.

V

CC

rises to a valid level.

2.

The bq2031 leaves the Fault state.

3.

The bq2031 detects battery insertion.

The LEDs go blank for approximately 750ms (typical)

while new programming data is latched.

For example, Figure 5 shows the bq2031 configured for

the Pulsed Current algorithm and display mode 2.

Voltage and Current Monitoring

The bq2031 monitors battery pack voltage at the BAT

pin. A voltage divider between the positive and negative

terminals of the battery pack is used to present a scaled

battery pack voltage to the BAT pin and an appropriate

value for regulation of float (maintenance) voltage to the

FLOAT pin. The bq2031 also uses the voltage across a

sense resistor (R

SNS

) between the negative terminal

of the battery pack and ground to monitor current.

See Figure 6 for the configuration of this network.

6

bq2031

FG203103.eps

bq2031

LED1/TSEL

VCC

COM

LED3/QSEL

VCC

VSS

LED2/DSEL

16

15

13

12

11

10

10K

10K

1K

1K

1K

10K

VSS

Figure 5. Configuring Charging Algorithm and Display Mode

FG203102.eps

bq2031

BAT

VCC

SNS

VCC

VSS

FLOAT

2

3

13

12

7

RB3

BAT -

RSNS

VSS

BAT +

RB1

RB2

Figure 6. Configuring the Battery Divider

background image

The resistor values are calculated from the following:

Equation 1

RB1

RB2

N

V

V

FLT

=

(

)

.

2 2

1

Equation 2

RB1

RB2

RB1

RB3

(

N

)

BLK

+

=

V

2 2

1

.

Equation 3

I

V

R

MAX

SNS

=

0 250

.

where:

n

N = Number of cells

n

V

FLT

= Desired float voltage

n

V

BLK

= Desired bulk charging voltage

n

I

MAX

= Desired maximum charge current

These parameters are typically specified by the battery

manufacturer. The total resistance presented across the

battery pack by RB1 + RB2 should be between 150k

and 1M

Ω. The minimum value ensures that the divider

network does not drain the battery excessively when the

power source is disconnected. Exceeding the maximum

value increases the noise susceptibility of the BAT pin.

An empirical procedure for setting the values in the re-

sistor network is as follows:

1.

Set RB2 to 49.9 k

Ω. (for 3 to 18 series cells)

2.

Determine RB1 from equation 1 given V

FLT

3.

Determine RB3 from equation 2 given V

BLK

4.

Calculate R

SNS

from equation 3 given I

MAX

Battery Insertion and Removal

The bq2031 uses V

BAT

to detect the presence or absence

of a battery. The bq2031 determines that a battery is

present when V

BAT

is between the High-Voltage Cutoff

(V

HCO

= 0.6 * V

CC

) and the Low-Voltage Cutoff (V

LCO

=

0.8V). When V

BAT

is outside this range, the bq2031 de-

termines that no battery is present and transitions to

the Fault state. Transitions into and out of the range

between V

LCO

and V

HCO

are treated as battery inser-

tions and removals, respectively. Besides being used to

detect battery insertion, the V

HCO

limit implicitly serves

as an over-voltage charge termination, because exceed-

ing this limit causes the bq2031 to believe that the bat-

tery has been removed.

The user must include a pull-up resistor from the posi-

tive terminal of the battery stack to VDC (and a diode to

prevent battery discharge through the power supply

when the supply is turned off) in order to detect battery

removal during periods of voltage regulation. Voltage

regulation occurs in pre-charge qualification test 1 prior

to all of the fast charge algorithms, and in phase 2 of the

Two-Step Voltage fast charge algorithm.

Temperature Monitoring

The bq2031 monitors temperature by examining the

voltage presented between the TS and SNS pins (V

TEMP

)

by a resistor network that includes a Negative Tempera-

ture Coefficient (NTC) thermistor. Resistance variations

around that value are interpreted as being proportional

to the battery temperature (see Figure 7).

The temperature thresholds used by the bq2031 and

their corresponding TS pin voltage are:

n

TCO—Temperature cutoff—Higher limit of the tem-

perature range in which charging is allowed. V

TCO

=

0.4 * V

CC

n

H T F — H i g h - t e m p e r a t u r e f a u l t — T h r e s h o l d t o

which temperature must drop after temperature

cutoff is exceeded before charging can begin again.

V

HTF

= 0.44 * V

CC

7

bq2031

FG203104.eps

VCC

VLTF = 0.6V

VHTF = 0.44V

VTCO = 0.4V

Hotter

VSS

TCO

HTF

LTF

Colder

Voltage

Temperature

Figure 7. Voltage Equivalent

of Temperature Thresholds

background image

n

LTF—Low-temperature fault—Lower limit of the

temperature range in which charging is allowed. V

LTF

= 0.6 * V

CC

A resistor-divider network must be implemented that

presents the defined voltage levels to the TS pin at the

desired temperatures (see Figure 8).

The equations for determining RT1 and RT2 are:

Equation 4

0 6

0 250

1

.

(

.

)

(

)

(

)

=

+

+

V

V

V

RT1

RT2

R

RT2

R

CC

CC

LTF

LTF

Equation 5

0 44

1

1

.

(

)

(

)

=

+

+

RT1

RT2

R

RT2

R

HTF

HTF

where:

n

R

LTF

= thermistor resistance at LTF

n

R

HTF

= thermistor resistance at HTF

TCO is determined by the values of RT1 and RT2. 1%

resistors are recommended.

Disabling Temperature Sensing

Temperature sensing can be disabled by removing RT

and using a 100k

Ω resistor for RT1 and RT2.

Temperature Compensation

The internal voltage reference used by the bq2031 for all

voltage threshold determinations is compensated for

temperature. The temperature coefficient is -3.9mV/°C,

normalized to 25°C. Voltage thresholds in the bq2031

vary by this proportion as ambient conditions change.

Fast-Charge Termination

Fast-charge termination criteria are programmed with

the fast charge algorithm per Table 1. Note that not all

criteria are applied in all algorithms.

Minimum Current

Fast charge terminates when the charging current drops

below a minimum current threshold programmed by the

value of IGSEL (see Table 3). This is used by the Two-

Step Voltage algorithm.

8

bq2031

FG203105.eps

bq2031

VCC

SNS

VCC

VSS

13

12

7

BAT -

RSNS

VSS

RT1

RT2

TS

8

RT

NTC

Thermistor

 t

Figure 8. Configuring

Temperature Sensing

IGSEL

I

MIN

0

I

MAX

/10

1

I

MAX

/20

Z

I

MAX

/30

Table 3. I

MIN

Termination Thresholds

background image

Second Difference (

2

V)

Second difference is a Unitrode proprietary algorithm

that accumulates the difference between successive sam-

ples of V

BAT

. The bq2031 takes a sample and makes a

termination decision at a frequency equal to 0.008 *

t

MTO

. Fast charge terminates when the accumulated dif-

ference is

≤ -8mV. Second difference is used only in the

Two-Step Current algorithm, and is subject to a hold-off

period (see below).

Maximum Voltage

Fast charge terminates when V

CELL

≥ V

BLK

. V

BLK

is set

per equation 2. Maximum voltage is used for fast charge

termination in the Two-Step Current and Pulsed Cur-

rent algorithms, and for transition from phase 1 to

phase 2 in the Two-Step Voltage algorithm. This crite-

rion is subject to a hold-off period.

Hold-off Periods

Maximum V and

2

V termination criteria are subject

to a hold-off period at the start of fast charge equal to

0.15 * t

MTO

. During this time, these termination criteria

are ignored.

Maximum Time-Out

Fast charge terminates if the programmed MTO time is

reached without some other termination shutting off

fast charge. MTO is programmed from 1 to 24 hours by

an R-C network on TMTO (see Figure 9) per the equa-

tion:

Equation 6

t

MTO

= 0.5 * R * C

where R is in k

Ω, C is in µF, and t

MTO

is in hours. Typi-

cally, the maximum value for C of 0.1

µF is used.

Fast-charge termination by MTO is a Fault only in the

Pulsed Current algorithm; the bq2031 enters the Fault

state and waits for a new battery insertion, at which

time it begins a new charge cycle. In the Two-Step Volt-

age and Two-Step Current algorithms, the bq2031 tran-

sitions to the maintenance phase on MTO time-out.

The MTO timer starts at the beginning of fast charge. In

the Two-Step Voltage algorithm, it is cleared and re-

started when the bq2031 transitions from phase 1 (cur-

rent regulation) to phase 2 (voltage regulation). The

MTO timer is suspended (but not reset) during the out-

of-range temperature (Charge Pending) state.

Maintenance Charging

Three algorithms are used in maintenance charging:

n

Two-Step Voltage algorithm

n

Two-Step Current algorithm

n

Pulsed Current algorithm

Two-Step Voltage Algorithm

In the Two-Step Voltage algorithm, the bq2031 provides

charge maintenance by regulating charging voltage to

V

FLT

. Charge current during maintenance is limited to

I

COND

.

Two-Step Current Algorithm

Maintenance charging in the Two-Step Current Algo-

rithm is implemented by varying the period (T

P

) of a

fixed current (I

COND

= I

MAX

/5) and duration (0.2 sec-

onds) pulse to achieve the configured average mainte-

nance current value. See Figure 10.

Maintenance current can be calculated by:

Equation 7

Maintenance current

I

T

I

T

COND

P

MAX

P

=

=

(( . )

)

(( .

)

)

0 2

0 04

where T

P

is the period of the waveform in seconds.

Table 4 gives the values of P programmed by IGSEL.

9

bq2031

TM

FG203112.eps

VCC

VSS

bq2031

12

13

1

VSS

VCC

C

R

Figure 9. R-C Network for Setting MTO

background image

Pulsed Current Algorithm

In the Pulsed Current algorithm, charging current is

turned off after the initial fast charge termination until

V

CELL

falls to V

FLT

. Full fast charge current (I

MAX

) is

then re-enabled to the battery until V

CELL

rises to V

BLK

.

This cycle repeats indefinitely.

Charge Regulation

The bq2031 controls charging through pulse-width modu-

lation of the MOD output pin, supporting both constant-

current and constant-voltage regulation. Charge current

is monitored by the voltage at the SNS pin, and charge

voltage by voltage at the BAT pin. These voltages are

compared to an internal temperature-compensated refer-

ence, and the MOD output modulated to maintain the de-

sired value.

Voltage at the SNS pin is determined by the value of re-

sistor R

SNS

, so nominal regulated current is set by:

Equation 8

I

MAX

= 0.250V/R

SNS

The switching frequency of the MOD output is deter-

mined by an external capacitor (CPWM) between the

pin TPWM and ground, per the following:

Equation 9

F

PWM

= 0.1/C

PWM

where C is in

µF and F is in kHz. A typical switching

rate is 100kHz, implying C

PWM

= 0.001

µF. MOD pulse

width is modulated between 0 and 80% of the switching

period.

To prevent oscillation in the voltage and current control

loops, frequency compensation networks (C or R-C) are

typically required on the VCOMP and ICOMP pins (respec-

tively) to add poles and zeros to the loop control equations.

A software program, “CNFG2031,” is available to assist in

configuring these networks for buck type regulators. For

more detail on the control loops in buck topology, see the

application note, “Switch-Mode Power Conversion Using

the bq2031.” For assistance with other power supply topolo-

gies, contact the factory.

10

bq2031

IGSEL

T

P

(sec.)

L

0.4

H

0.8

Z

1.6

Table 4. Fixed-Pulse Period by IGSEL

TD203101.eps

ICOND

ICOND

ICOND

0

0

0

IGSEL = L

Ave. Current

IGSEL = H

Ave. Current

IGSEL = Z

Ave. Current

TP = 1.6 Sec

TP = 0.8 Sec

TP = 0.4 Sec

0.2 Sec

Figure 10. Implementation of Fixed-Pulse Maintenance Charge

background image

11

bq2031

Absolute Maximum Ratings

Symbol

Parameter

Minimum

Maximum

Unit

Notes

V

CC

V

CC

relative to V

SS

-0.3

+7.0

V

V

T

DC voltage applied on any pin ex-

cluding V

CC

relative to V

SS

-0.3

+7.0

V

T

OPR

Operating ambient temperature

-20

+70

°C

Commercial

T

STG

Storage temperature

-55

+125

°C

T

SOLDER

Soldering temperature

-

+260

°C

10 s. max.

T

BIAS

Temperature under bias

-40

+85

°C

Note:

Permanent device damage may occur if Absolute Maximum Ratings are exceeded. Functional opera-

tion should be limited to the Recommended DC Operating Conditions detailed in this data sheet. Expo-

sure to conditions beyond the operational limits for extended periods of time may affect device reliability.

DC Thresholds

(TA = TOPR; VCC = 5V

±10%)

Symbol

Parameter

Rating

Unit

Tolerance

Notes

V

REF

Internal reference voltage

2.20

V

1%

T

A

= 25°C

Temperature coefficient

-3.9

mV/°C

10%

V

LTF

TS maximum threshold

0.6 * V

CC

V

±0.03V

Low-temperature fault

V

HTF

TS hysteresis threshold

0.44 * V

CC

V

±0.03V

High-temperature fault

V

TCO

TS minimum threshold

0.4 * V

CC

V

±0.03V

Temperature cutoff

V

HCO

High cutoff voltage

0.60 * V

CC

V

±0.03V

V

MIN

Under-voltage threshold at BAT

0.34 * V

CC

V

±0.03V

V

LCO

Low cutoff voltage

0.8

V

±0.03V

V

SNS

Current sense at SNS

0.250

V

10%

I

MAX

0.05

V

10%

I

COND

background image

12

bq2031

Recommended DC Operating Conditions

(TA = TOPR)

Symbol

Parameter

Minimum

Typical

Maximum

Unit

Notes

V

CC

Supply voltage

4.5

5.0

5.5

V

V

TEMP

TS voltage potential

0

-

V

CC

V

V

TS

- V

SNS

V

CELL

Battery voltage potential

0

-

V

CC

V

V

BAT

- V

SNS

I

CC

Supply current

-

2

4

mA

Outputs unloaded

I

IZ

DSEL tri-state open detection

-2

-

2

µA

Note 2

IGSEL tri-state open detection

-2

2

µA

V

IH

Logic input high

V

CC

-1.0

-

-

V

QSEL,TSEL

V

CC

-0.3

-

-

V

DSEL, IGSEL

V

IL

Logic input low

-

-

V

SS

+1.0

V

QSEL,TSEL

-

-

V

SS

+0.3

V

DSEL, IGSEL

V

OH

LED

1

, LED

2

, LED

3

, output high

V

CC

-0.8

-

-

V

I

OH

≤ 10mA

MOD output high

V

CC

-0.8

-

-

V

I

OH

≤ 10mA

V

OL

LED

1

, LED

2

, LED

3

, output low

-

-

V

SS

+0.8V

V

I

OL

≤ 10mA

MOD output low

-

-

V

SS

+0.8V

V

I

OL

≤ 10mA

FLOAT output low

-

-

V

SS

+0.8V

V

I

OL

≤ 5mA, Note 3

COM output low

-

-

V

SS+

0.5

V

I

OL

≤ 30mA

I

OH

LED

1

, LED

2

, LED

3

, source

-10

-

-

mA

V

OH

=V

CC

-0.5V

MOD source

-5.0

-

-

mA

V

OH

=V

CC

-0.5V

I

OL

LED

1

, LED

2

, LED

3

, sink

10

-

-

mA

V

OL

= V

SS

+0.5V

MOD sink

5

-

-

mA

V

OL

= V

SS

+0.8V

FLOAT sink

5

-

-

mA

V

OL

= V

SS

+0.8V, Note 3

COM sink

30

-

-

mA

V

OL

= V

SS

+0.5V

I

IL

DSEL logic input low source

-

-

+30

µA

V = V

SS

to V

SS

+ 0.3V, Note 2

IGSEL logic input low source

-

-

+70

µA

V = V

SS

to V

SS

+ 0.3V

I

IH

DSEL logic input high source

-30

-

-

µA

V = V

CC

- 0.3V to V

CC

IGSEL logic input high source

-70

-

-

µA

V = V

CC

- 0.3V to V

CC

I

L

Input leakage

-

-

±1

µA

QSEL, TSEL, Note 2

Notes:

1.

All voltages relative to V

SS

except where noted.

2.

Conditions during initialization after V

CC

applied.

3.

SNS = 0V.

background image

13

bq2031

Impedance

Symbol

Parameter

Minimum

Typical

Maximum

Unit

Notes

R

BATZ

BAT pin input impedance

50

-

-

M

R

SNSZ

SNS pin input impedance

50

-

-

M

R

TSZ

TS pin input impedance

50

-

-

M

R

PROG1

Soft-programmed pull-up or pull-down

resistor value (for programming)

-

-

10

k

DSEL, TSEL, and

QSEL

R

PROG2

Pull-up or pull-down resistor value

-

-

3

k

IGSEL

R

MTO

Charge timer resistor

20

-

480

k

Timing

(TA = TOPR; VCC = 5V

±10%)

Symbol

Parameter

Minimum

Typical

Maximum

Unit

Notes

t

MTO

Charge time-out range

1

-

24

hours

See Figure 9

t

QT1

Pre-charge qual test 1 time-out period

-

0.02t

MTO

-

-

t

QT2

Pre-charge qual test 2 time-out period

-

0.16t

MTO

-

-

t

DV

2

V termination sample frequency

-

0.008t

MTO

-

-

t

H01

Pre-charge qual test 2 hold-off period

-

0.002t

MTO

-

-

t

H02

Bulk charge hold-off period

-

0.015t

MTO

-

-

F

PWM

PWM regulator frequency range

-

100

kHz

See Equation 9

Capacitance

Symbol

Parameter

Minimum

Typical

Maximum

Unit

C

MTO

Charge timer capacitor

-

0.1

0.1

µF

C

PWM

PWM R-C capacitance

-

0.001

-

µF

background image

14

bq2031

16-Pin SOIC Narrow (SN)

A

A1

.004

C

B

e

D

E

H

L

16-Pin SN (0.150" SOIC)

Dimension

Inches

Millimeters

Min.

Max.

Min.

Max.

A

0.060

0.070

1.52

1.78

A1

0.004

0.010

0.10

0.25

B

0.013

0.020

0.33

0.51

C

0.007

0.010

0.18

0.25

D

0.385

0.400

9.78

10.16

E

0.150

0.160

3.81

4.06

e

0.045

0.055

1.14

1.40

H

0.225

0.245

5.72

6.22

L

0.015

0.035

0.38

0.89

16-Pin PN (0.300" DIP)

Dimension

Inches

Millimeters

Min.

Max.

Min.

Max.

A

0.160

0.180

4.06

4.57

A1

0.015

0.040

0.38

1.02

B

0.015

0.022

0.38

0.56

B1

0.055

0.065

1.40

1.65

C

0.008

0.013

0.20

0.33

D

0.740

0.770

18.80

19.56

E

0.300

0.325

7.62

8.26

E1

0.230

0.280

5.84

7.11

e

0.300

0.370

7.62

9.40

G

0.090

0.110

2.29

2.79

L

0.115

0.150

2.92

3.81

S

0.020

0.040

0.51

1.02

16-Pin DIP Narrow  (PN)

background image

15

bq2031

Change No.

Page No.

Description

Nature of Change

1

Descriptions

Clarified and consolidated

1

Renamed

Dual-Level Constant Current Mode to Two-Step Current Mode

V

MCV

to V

HCO

V

INT

to V

LCO

t

UV1

to t

QT1

t

UV2

to t

QT2

1

Consolidation

Tables 1 and 2

1

Added figures

Start-up states

Temperature sense input voltage thresholds

Pulsed maintenance current implementation

1

Updated figures

Figures 1 through 6

1

Added equations

Thermistor divider network configuration equations

1

Raised condition

MOD V

OL

and V

OH

parameters from

≤5mA to ≤10µA

1

Corrected Conditions

VSNS rating from V

MAX

and V

MIN

to I

MAX

and I

MIN

1

Added table

Capacitance table for C

MTO

and C

PWM

2

6

Changed values in

Figure 5

Was 51K; is now 10K

3

7, 10

Changed values

in Equations 3 and 8

Was: I

MAX

=  0.275V/R

SNS

; is now I

MAX

= 0.250V/R

SNS

3

8

Changed values

in Equation 4

Was: (V

CC

- 0.275); is now (V

CC

- 0.250V)

3

11

Changed rating value

for V

SNS

in DC

Thresholds table

Was 0.275; is now 0.250

4

11

T

OPR

Deleted industrial temperature range.

Notes:

Change 1 = Dec. 1995 B changes from June 1995 A.

Change 2 = Sept. 1996 C changes from Dec. 1995 B.

Change 3 = April 1997 D changes from Sept. 1996 C.

Change 4 = June 1999 E changes from April 1997 D.

Data Sheet Revision History

bq2031

Package Option:

PN

= 16-pin plastic DIP

SN

= 16-pin narrow SOIC

Device:

bq2031 Lead Acid Charge IC

Ordering Information

background image

16

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any

product or service without notice, and advise customers to obtain the latest version of relevant information to verify,

before placing orders, that information being relied on is current and complete. All products are sold subject to the

terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty,

patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accor-

dance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems

necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, ex-

cept those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH,

PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). TI

SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR

USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI

PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK.

In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards

must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that

any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellec-

tual property right of TI covering or relating to any combination, machine, or process in which such semiconductor

products or services might be or are used. TI’s publication of information regarding any third party’s products or ser-

vices does not constitute TI’s approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated