background image

 1

Motorola Small–Signal Transistors, FETs and Diodes Device Data

Dual  Bias  Resistor  Transistors

NPN Silicon Surface Mount Transistors with

Monolithic Bias Resistor Network

The BRT (Bias Resistor Transistor) contains a single transistor with a

monolithic bias network consisting of two resistors; a series base resistor and a

base–emitter resistor. These digital transistors are designed to replace a single

device and its external resistor bias network. The BRT eliminates these

individual components by integrating them into a single device. In the

MUN5211DW1T1 series, two BRT devices are housed in the SOT–363

package which is ideal for low power surface mount applications where board

space is at a premium.

Simplifies Circuit Design

Reduces Board Space

Reduces Component Count

Available in 8 mm, 7 inch/3000 Unit Tape and Reel.

MAXIMUM RATINGS 

(TA = 25

°

C unless otherwise noted, common for Q1 and Q2)

Rating

Symbol

Value

Unit

Collector-Base Voltage

VCBO

50

Vdc

Collector-Emitter Voltage

VCEO

50

Vdc

Collector Current

IC

100

mAdc

THERMAL CHARACTERISTICS

Thermal Resistance — Junction-to-Ambient (surface mounted)

R

θ

JA

833

°

C/W

Operating and Storage Temperature Range

TJ, Tstg

– 65 to +150

°

C

Total Package Dissipation @ TA = 25

°

C(1)

PD

*

150

mW

DEVICE MARKING AND RESISTOR VALUES: MUN5211DW1T1 SERIES

Device

Marking

R1 (K)

R2 (K)

MUN5211DW1T1

MUN5212DW1T1

MUN5213DW1T1

MUN5214DW1T1

MUN5215DW1T1(2)

7A

7B

7C

7D

7E

10

22

47

10

10

10

22

47

47

MUN5216DW1T1(2)

MUN5230DW1T1(2)

MUN5231DW1T1(2)

MUN5232DW1T1(2)

MUN5233DW1T1(2)

MUN5234DW1T1(2)

MUN5235DW1T1(2)

7F

7G

7H

7J

7K

7L

7M

4.7

1.0

2.2

4.7

4.7

22

2.2

1.0

2.2

4.7

47

47

47

1. Device mounted on a FR-4 glass epoxy printed circuit board using the minimum recommended footprint.

2. New resistor combinations. Updated curves to follow in subsequent data sheets.

Thermal Clad is a trademark of the Bergquist Company

Preferred devices are Motorola recommended choices for future use and best overall value.

Order this document

by MUN5211DW1T1/D

MOTOROLA

SEMICONDUCTOR TECHNICAL DATA

Motorola Preferred Devices

MUN5211DW1T1

SERIES

CASE 419B–01, STYLE 1

SOT–363

Q1

R1

R2

R2

R1

Q2

(4)

(5)

(6)

(1)

(2)

(3)

1

2

3

6

5

4

©

 Motorola, Inc. 1996

REV 1

background image

MUN5211DW1T1  SERIES

 2

Motorola Small–Signal Transistors, FETs and Diodes Device Data

ELECTRICAL CHARACTERISTICS

 

(TA = 25

°

C unless otherwise noted, common for Q1 and Q2)

Characteristic

Symbol

Min

Typ

Max

Unit

OFF CHARACTERISTICS

Collector-Base Cutoff Current (VCB = 50 V, IE = 0)

ICBO

100

nAdc

Collector-Emitter Cutoff Current (VCE = 50 V, IB = 0)

ICEO

500

nAdc

Emitter-Base Cutoff Current

MUN5211DW1T1

(VEB = 6.0 V, IC = 0)

MUN5212DW1T1

MUN5213DW1T1

MUN5214DW1T1

MUN5215DW1T1

MUN5216DW1T1

MUN5230DW1T1

MUN5231DW1T1

MUN5232DW1T1

MUN5233DW1T1

MUN5234DW1T1

MUN5235DW1T1

IEBO

0.5

0.2

0.1

0.2

0.9

1.9

4.3

2.3

1.5

0.18

0.13

0.2

mAdc

Collector-Base Breakdown Voltage (IC = 10 

µ

A, IE = 0)

V(BR)CBO

50

Vdc

Collector-Emitter Breakdown Voltage(3) (IC = 2.0 mA, IB = 0)

V(BR)CEO

50

Vdc

ON CHARACTERISTICS(3)

DC Current Gain

MUN5211DW1T1

(VCE = 10 V, IC = 5.0 mA)

MUN5212DW1T1

MUN5213DW1T1

MUN5214DW1T1

MUN5215DW1T1

MUN5216DW1T1

MUN5230DW1T1

MUN5231DW1T1

MUN5232DW1T1

MUN5233DW1T1

MUN5234DW1T1

MUN5235DW1T1

hFE

35

60

80

80

160

160

3.0

8.0

15

80

80

80

60

100

140

140

350

350

5.0

15

30

200

150

140

Collector-Emitter Saturation Voltage (IC = 10 mA, IB = 0.3 mA)

(IC =  10 mA, IB =  5 mA)  MUN5230DW1T1/MUN5231DW1T1

(IC =  10 mA, IB =  1 mA)  MUN5215DW1T1/MUN5216DW1T1

               MUN5232DW1T1/MUN5233DW1T1/MUN5234DW1T1

VCE(sat)

0.25

Vdc

Output Voltage (on)

(VCC = 5.0 V, VB = 2.5 V, RL = 1.0 k

)

MUN5211lDW1T1

MUN5212DW1T1

MUN5214DW1T1

MUN5215DW1T1

MUN5216DW1T1

MUN5230DW1T1

MUN5231DW1T1

MUN5232DW1T1

MUN5233DW1T1

MUN5234DW1T1

MUN5235DW1T1

(VCC = 5.0 V, VB = 3.5 V, RL = 1.0 k

)

MUN5213DW1T1

VOL

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

Vdc

3. Pulse Test: Pulse Width < 300 

µ

s, Duty Cycle < 2.0%

background image

MUN5211DW1T1  SERIES

 3

Motorola Small–Signal Transistors, FETs and Diodes Device Data

ELECTRICAL CHARACTERISTICS 

(TA = 25

°

C unless otherwise noted, common for Q1 and Q2)

 

(Continued)

Characteristic

Symbol

Min

Typ

Max

Unit

Output Voltage (off)  (VCC = 5.0 V, VB = 0.5 V, RL = 1.0 k

)

(VCC =  5.0 V, VB =  0.050 V, RL = 1.0 k

)

MUN5230DW1T1

(VCC =  5.0 V, VB =  0.25 V, RL = 1.0 k

)

MUN5215DW1T1

MUN5216DW1T1

MUN5233DW1T1

VOH

4.9

Vdc

Input Resistor

MUN5211DW1T1

MUN5212DW1T1

MUN5213DW1T1

MUN5214DW1T1

MUN5215DW1T1

MUN5216DW1T1

MUN5230DW1T1

MUN5231DW1T1

MUN5232DW1T1

MUN5233DW1T1

MUN5234DW1T1

MUN5235DW1T1

R1

7.0

15.4

32.9

7.0

7.0

3.3

0.7

1.5

3.3

3.3

15.4

1.54

10

22

47

10

10

4.7

1.0

2.2

4.7

4.7

22

2.2

13

28.6

61.1

13

13

6.1

1.3

2.9

6.1

6.1

28.6

2.86

Resistor Ratio MUN5211DW1T1/MUN5212DW1T1/MUN5213DW1T1

MUN5214DW1T1

MUN5215DW1T1/MUN5216DW1T1

MUN5230DW1T1/MUN5231DW1T1/MUN5232DW1T1

MUN5233DW1T1

MUN5234DW1T1

MUN5235DW1T1

R1/R2

0.8

0.17

0.8

0.055

0.38

0.038

1.0

0.21

1.0

0.1

0.47

0.047

1.2

0.25

1.2

0.185

0.56

0.056

Figure 1. Derating Curve

250

200

150

100

50

0

– 50

0

50

100

150

TA, AMBIENT TEMPERATURE (

°

C)

P

D

, POWER DISSIP

A

TION 

(MILLIW

A

TTS)

R

θ

JA = 833

°

C/W

background image

MUN5211DW1T1  SERIES

 4

Motorola Small–Signal Transistors, FETs and Diodes Device Data

TYPICAL ELECTRICAL CHARACTERISTICS — MUN5211DW1T1

V

in

, INPUT

 VOL

TAGE (VOL

TS)

I C

, COLLECT

OR 

CURRENT

 (mA)

h

FE

, DC CURRENT

 GAIN (NORMALIZED)

Figure 2. VCE(sat) versus IC

10

0

20

30

IC, COLLECTOR CURRENT (mA)

10

1

0.1

TA = –25

°

C

75

°

C

25

°

C

40

50

Figure 3. DC Current Gain

Figure 4. Output Capacitance

1

0.1

0.01

0.001

0

20

40

50

IC, COLLECTOR CURRENT (mA)

V

CE(sat)

, MAXIMUM COLLECT

OR 

VOL

TAGE (VOL

TS)

1000

100

10

1

10

100

IC, COLLECTOR CURRENT (mA)

TA = 75

°

C

25

°

C

–25

°

C

TA = –25

°

C

25

°

C

Figure 5. Output Current versus Input Voltage

75

°

C

25

°

C

TA = –25

°

C

100

10

1

0.1

0.01

0.001

0

1

2

3

4

Vin, INPUT VOLTAGE (VOLTS)

5

6

7

8

9

10

Figure 6. Input Voltage versus Output Current

50

0

10

20

30

40

4

3

1

2

0

VR, REVERSE BIAS VOLTAGE (VOLTS)

C

ob

, CAP

ACIT

ANCE 

(pF)

75

°

C

VCE = 10 V

f = 1 MHz

IE = 0 V

TA = 25

°

C

VO = 5 V

VO = 0.2 V

IC/IB = 10

background image

MUN5211DW1T1  SERIES

 5

Motorola Small–Signal Transistors, FETs and Diodes Device Data

TYPICAL ELECTRICAL CHARACTERISTICS — MUN5212DW1T1

V

in

, INPUT

 VOL

TAGE (VOL

TS)

I C

, COLLECT

OR 

CURRENT

 (mA)

h

FE

, DC CURRENT

 GAIN (NORMALIZED)

Figure 7. VCE(sat) versus IC

Figure 8. DC Current Gain

Figure 9. Output Capacitance

Figure 10. Output Current versus Input Voltage

1000

10

IC, COLLECTOR CURRENT (mA)

TA = 75

°

C

25

°

C

–25

°

C

100

10

1

100

75

°

C

25

°

C

100

0

Vin, INPUT VOLTAGE (VOLTS)

10

1

0.1

0.01

0.001

2

4

6

8

10

TA = –25

°

C

0

IC, COLLECTOR CURRENT (mA)

100

TA = –25

°

C

75

°

C

10

1

0.1

10

20

30

40

50

25

°

C

Figure 11. Input Voltage versus Output Current

0.001

V

CE(sat)

, MAXIMUM COLLECT

OR 

VOL

TAGE (VOL

TS)

TA = –25

°

C

75

°

C

25

°

C

0.01

0.1

1

40

IC, COLLECTOR CURRENT (mA)

0

20

50

50

0

10

20

30

40

4

3

2

1

0

VR, REVERSE BIAS VOLTAGE (VOLTS)

C

ob

, CAP

ACIT

ANCE 

(pF)

IC/IB = 10

VCE = 10 V

f = 1 MHz

IE = 0 V

TA = 25

°

C

VO = 5 V

VO = 0.2 V

background image

MUN5211DW1T1  SERIES

 6

Motorola Small–Signal Transistors, FETs and Diodes Device Data

TYPICAL ELECTRICAL CHARACTERISTICS — MUN5213DW1T1

V

in

, INPUT

 VOL

TAGE (VOL

TS)

I C

, COLLECT

OR 

CURRENT

 (mA)

h

FE

, DC CURRENT

 GAIN (NORMALIZED)

Figure 12. VCE(sat) versus IC

0

2

4

6

8

10

100

10

1

0.1

0.01

0.001

Vin, INPUT VOLTAGE (VOLTS)

TA = –25

°

C

75

°

C

25

°

C

Figure 13. DC Current Gain

Figure 14. Output Capacitance

100

10

1

0.1

0

10

20

30

40

50

IC, COLLECTOR CURRENT (mA)

Figure 15. Output Current versus Input Voltage

1000

10

IC, COLLECTOR CURRENT (mA)

TA = 75

°

C

25

°

C

–25

°

C

100

10

1

100

25

°

C

75

°

C

50

0

10

20

30

40

1

0.8

0.6

0.4

0.2

0

VR, REVERSE BIAS VOLTAGE (VOLTS)

C

ob

, CAP

ACIT

ANCE 

(pF)

Figure 16. Input Voltage versus Output Current

0

20

40

50

10

1

0.1

0.01

IC, COLLECTOR CURRENT (mA)

25

°

C

75

°

C

V

CE(sat)

, MAXIMUM COLLECT

OR 

VOL

TAGE (VOL

TS)

VCE = 10 V

f = 1 MHz

IE = 0 V

TA = 25

°

C

VO = 5 V

VO = 0.2 V

IC/IB = 10

TA = –25

°

C

TA = –25

°

C

background image

MUN5211DW1T1  SERIES

 7

Motorola Small–Signal Transistors, FETs and Diodes Device Data

TYPICAL ELECTRICAL CHARACTERISTICS — MUN5214DW1T1

10

1

0.1

0

10

20

30

40

50

100

10

1

0

2

4

6

8

10

4

3.5

3

2.5

2

1.5

1

0.5

0

0

2

4

6

8

10

15

20

25 30

35

40

45

50

VR, REVERSE BIAS VOLTAGE (VOLTS)

V

in

, INPUT

 VOL

TAGE (VOL

TS)

I C

, COLLECT

OR 

CURRENT

 (mA)

h

FE

, DC CURRENT

 GAIN (NORMALIZED)

Figure 17. VCE(sat) versus IC

IC, COLLECTOR CURRENT (mA)

0

20

40

60

80

V

CE(sat)

, MAXIMUM COLLECT

OR 

VOL

TAGE (VOL

TS)

Figure 18. DC Current Gain

1

10

100

IC, COLLECTOR CURRENT (mA)

Figure 19. Output Capacitance

Figure 20. Output Current versus Input Voltage

Vin, INPUT VOLTAGE (VOLTS)

C

ob

, CAP

ACIT

ANCE 

(pF)

Figure 21. Input Voltage versus Output Current

IC, COLLECTOR CURRENT (mA)

1

0.1

0.01

0.001

–25

°

C

25

°

C

TA = 75

°

C

VCE = 10

300

250

200

150

100

50

0

2

4

6

8

15

20 40

50 60 70 80

90

f = 1 MHz

lE = 0 V

TA = 25

°

C

25

°

C

IC/IB = 10

TA = –25

°

C

TA = 75

°

C

25

°

C

–25

°

C

VO = 0.2 V

TA = –25

°

C

75

°

C

VO = 5 V

25

°

C

75

°

C

background image

MUN5211DW1T1  SERIES

 8

Motorola Small–Signal Transistors, FETs and Diodes Device Data

INFORMATION FOR USING THE SOT–363 SURFACE MOUNT PACKAGE

MINIMUM RECOMMENDED FOOTPRINTS FOR SURFACE MOUNTED APPLICATIONS

Surface mount board layout is a critical portion of the total

design. The footprint for the semiconductor packages must

be the correct size to insure proper solder connection

interface between the board and the package. With the

correct pad geometry, the packages will self align when

subjected to a solder reflow process.

SOT–363

ÉÉ

ÉÉ

ÉÉ

ÉÉ

ÉÉ

ÉÉ

ÉÉ

ÉÉ

ÉÉ

ÉÉ

ÉÉ

ÉÉ

ÉÉ

ÉÉ

0.5 mm (min)

0.4 mm (min)

0.65 mm

0.65 mm

1.9 mm

SOT–363 POWER DISSIPATION

The power dissipation of the SOT–363 is a function of the

pad size. This can vary from the minimum pad size for

soldering to the pad size given for maximum power

dissipation. Power dissipation for a surface mount device is

determined by TJ(max), the maximum rated junction tempera-

ture of the die, R

θ

JA, the thermal resistance from the device

junction to ambient; and the operating temperature, TA.

Using the values provided on the data sheet, PD can be

calculated as follows:

PD =

TJ(max) – TA

R

θ

JA

The values for the equation are found in the maximum

ratings table on the data sheet. Substituting these values into

the equation for an ambient temperature TA of 25

°

C, one can

calculate the power dissipation of the device which in this

case is 150 milliwatts.

PD =

150

°

C – 25

°

C

833

°

C/W

= 150 milliwatts

The 833

°

C/W for the SOT–363 package assumes the use

of the recommended footprint on a glass epoxy printed circuit

board to achieve a power dissipation of 150 milliwatts. There

are other alternatives to achieving higher power dissipation

from the SOT–363 package. Another alternative would be to

use a ceramic substrate or an aluminum core board such as

Thermal Clad

. Using a board material such as Thermal

Clad, an aluminum core board, the power dissipation can be

doubled using the same footprint.

SOLDERING PRECAUTIONS

The melting temperature of solder is higher than the rated

temperature of the device. When the entire device is heated

to a high temperature, failure to complete soldering within a

short time could result in device failure. Therefore, the

following items should always be observed in order to

minimize the thermal stress to which the devices are

subjected.

Always preheat the device.

The delta temperature between the preheat and

soldering should be 100

°

C or less.*

When preheating and soldering, the temperature of the

leads and the case must not exceed the maximum

temperature ratings as shown on the data sheet. When

using infrared heating with the reflow soldering method,

the difference should be a maximum of 10

°

C.

The soldering temperature and time should not exceed

260

°

C for more than 10 seconds.

When shifting from preheating to soldering, the

maximum temperature gradient should be 5

°

C or less.

After soldering has been completed, the device should

be allowed to cool naturally for at least three minutes.

Gradual cooling should be used as the use of forced

cooling will increase the temperature gradient and result

in latent failure due to mechanical stress.

Mechanical stress or shock should not be applied during

cooling.

* Soldering a device without preheating can cause excessive

thermal shock and stress which can result in damage to the

device.

background image

MUN5211DW1T1  SERIES

 9

Motorola Small–Signal Transistors, FETs and Diodes Device Data

SOLDER STENCIL GUIDELINES

Prior to placing surface mount components onto a printed

circuit board, solder paste must be applied to the pads. A

solder stencil is required to screen the optimum amount of

solder paste onto the footprint. The stencil is made of brass

or stainless steel with a typical thickness of 0.008 inches.

The stencil opening size for the surface mounted package

should be the same as the pad size on the printed circuit

board, i.e., a 1:1 registration.

TYPICAL SOLDER HEATING PROFILE

For any given circuit board, there will be a group of control

settings that will give the desired heat pattern. The operator

must set temperatures for several heating zones, and a

figure for belt speed. Taken together, these control settings

make up a heating “profile” for that particular circuit board.

On machines controlled by a computer, the computer

remembers these profiles from one operating session to the

next. Figure 25 shows a typical heating profile for use when

soldering a surface mount device to a printed circuit board.

This profile will vary among soldering systems but it is a good

starting point. Factors that can affect the profile include the

type of soldering system in use, density and types of

components on the board, type of solder used, and the type

of board or substrate material being used. This profile shows

temperature versus time. The line on the graph shows the

actual temperature that might be experienced on the surface

of a test board at or near a central solder joint. The two

profiles are based on a high density and a low density board.

The Vitronics SMD310 convection/infrared reflow soldering

system was used to generate this profile. The type of solder

used was 62/36/2 Tin Lead Silver with a melting point

between 177 –189

°

C. When this type of furnace is used for

solder reflow work, the circuit boards and solder joints tend to

heat first. The components on the board are then heated by

conduction. The circuit board, because it has a large surface

area, absorbs the thermal energy more efficiently, then

distributes this energy to the components. Because of this

effect, the main body of a component may be up to 30

degrees cooler than the adjacent solder joints.

STEP 1

PREHEAT

ZONE 1

“RAMP”

STEP 2

VENT

“SOAK”

STEP 3

HEATING

ZONES 2 & 5

“RAMP”

STEP 4

HEATING

ZONES 3 & 6

“SOAK”

STEP 5

HEATING

ZONES 4 & 7

“SPIKE”

STEP 6

VENT

STEP 7

COOLING

200

°

C

150

°

C

100

°

C

50

°

C

TIME (3 TO 7 MINUTES TOTAL)

TMAX

SOLDER IS LIQUID FOR

40 TO 80 SECONDS

(DEPENDING ON

MASS OF ASSEMBLY)

205

°

 TO 219

°

C

PEAK AT

SOLDER JOINT

DESIRED CURVE FOR LOW

MASS ASSEMBLIES

100

°

C

150

°

C

160

°

C

140

°

C

Figure 22. Typical Solder Heating Profile

DESIRED CURVE FOR HIGH

MASS ASSEMBLIES

170

°

C

background image

MUN5211DW1T1  SERIES

 10

Motorola Small–Signal Transistors, FETs and Diodes Device Data

PACKAGE DIMENSIONS

CASE 419B–01

ISSUE C

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI

Y14.5M, 1982.

2. CONTROLLING DIMENSION: INCH.

DIM

A

MIN

MAX

MIN

MAX

MILLIMETERS

1.80

2.20

0.071

0.087

INCHES

B

1.15

1.35

0.045

0.053

C

0.80

1.10

0.031

0.043

D

0.10

0.30

0.004

0.012

G

0.65 BSC

0.026 BSC

H

–––

0.10

–––

0.004

J

0.10

0.25

0.004

0.010

K

0.10

0.30

0.004

0.012

N

0.20 REF

0.008 REF

S

2.00

2.20

0.079

0.087

V

0.30

0.40

0.012

0.016

B

0.2 (0.008)

M

M

1

2

3

A

G

V

S

H

C

N

J

K

6

5

4

–B–

D

6 PL

STYLE 1:

PIN 1. EMITTER 2

 2. BASE 2

 3. COLLECTOR 1

 4. EMITTER 1

 5. BASE 1

 6. COLLECTOR 2

Motorola reserves the right to make changes without further notice to any products herein.  Motorola makes no warranty, representation or guarantee regarding

the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and

specifically disclaims any and all liability, including without limitation consequential or incidental damages.  “Typical” parameters which may be provided in Motorola

data sheets and/or specifications can and do vary in different applications and actual performance may vary over time.  All operating parameters, including “Typicals”

must be validated for each customer application by customer’s technical experts.  Motorola does not convey any license under its patent rights nor the rights of

others.  Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other

applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury

or death may occur.  Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola

and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees

arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that

Motorola was negligent regarding the design or manufacture of the part. Motorola and        are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal

Opportunity/Affirmative Action Employer.

Mfax is a trademark of Motorola, Inc.

How to reach us:

USA / EUROPE / Locations Not Listed: Motorola Literature Distribution;

JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,

P.O. Box 5405, Denver, Colorado 80217. 303–675–2140 or 1–800–441–2447

3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan.  81–3–3521–8315

Mfax

: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 

INTERNET: http://Design–NET.com

51 Ting Kok Road, Tai Po, N.T., Hong Kong.  852–26629298

MUN5211DW1T1/D