background image

D5SC4M

 40V  5A

Copyright & Copy;2000 Shindengen Electric Mfg.Co.Ltd

OUTLINE DIMENSIONS

Unit : mm

RATINGS

SHINDENGEN

Case : ITO-220

Switching power supply

DC/DC converter

Home Appliances, Office Equipment

Telecommunication

APPLICATION

Tj150℃

P

RRSM

 avalanche guaranteed

Fully Isolated Molding

FEATURES

Schottky Rectifiers (SBD)

 

Dual

●Absolute Maximum Ratings  (If not specified Tc=25℃)

Item

Symbol

Conditions

Ratings

Unit

Storage Temperature

Tstg

-40∼150

Operating Junction Temperature

Tj

150

Maximum Reverse Voltage

V

RM

40

V

Repetitive Peak Surge Reverse Voltage

V

RRSM

Pulse width 0.5ms, duty 1/40

45

V

Average Rectified Forward Current

I

O

50Hz sine wave, R-load, Rating for each diode Io/2, Tc=136℃

5

A

Peak Surge Forward Current

I

FSM

50Hz sine wave, Non-repetitive 1 cycle peak value, Tj=125℃

50

A

Repetitive Peak Surge Reverse Power

P

RRSM

Pulse width 10μs, Rating of per diode, Tj=25℃

330

W

Dielectric Strength

Vdis

Terminals to case, AC 1 minute

1.5

kV

Mounting Torque

TOR

(Recommended torque:0.3N・m)

0.5

N・m

●Electrical Characteristics  (If not specified Tc=25℃)

Item

Symbol

Conditions

Ratings

Unit

Forward Voltage

V

F

I

F

=2.5A,    Pulse measurement, Rating of per diode

Max.0.55

V

Reverse Current

I

R

V

R

=V

RM,

    Pulse measurement, Rating of per diode

Max.2.5

mA

Junction Capacitance

Cj

f=1MHz,    V

R

=10V,    Rating of per diode

Typ.116

pF

Thermal Resistance

θjc

junction to case

Max.3.3

℃/W

background image

Forward Voltage

0.1

1

10

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

D5SC4M

Tc=150

°

C [MAX]

Tc=25

°

C [MAX]

Pulse measurement per diode

Tc=150

°

C [TYP]

Tc=25

°

C [TYP]

Forward Voltage  V

F

  [V]

Forward Current  I

F

  [A]

background image

10

100

1000

D5SC4M

0.1

1

10

0.05

0.5

0.2

20

50

5

2

200

500

2000

5000

0.02

0.05

0.5

0.2

20

5

2

0.005

0.002

Reverse Voltage  V

R

  [V]

Junction Capacitance  Cj  [pF]

f=1MHz

Tc=25

°

C

TYP

per diode

Junction Capacitance

background image

Reverse Current

0.01

0.1

1

10

100

1000

0

5

10

15

20

25

30

35

40

D5SC4M

Tc=150

°

C [MAX]

Tc=150

°

C [TYP]

Pulse measurement per diode

Tc=125

°

C [TYP]

Tc=100

°

C [TYP]

Tc=75

°

C [TYP]

Reverse Voltage  V

R

  [V]

Reverse Current  I

R

  [mA]

background image

0

2

4

6

8

10

0

10

20

30

40

50

D5SC4M

0.3

Reverse Power Dissipation

Tj = Tjmax

SIN

0.2

0.5

D=0.05

DC

0.1

0.8

0

t

p

V

R

T

D=t

p

/T

Reverse Voltage  V

R

  [V]

Reverse Power Dissipation  P

R

  [W]

background image

0

t

p

I

O

T

D=t

p

/T

0

1

2

3

4

5

0

1

2

3

4

5

6

7

8

D5SC4M

0.3

Forward Power Dissipation

Tj = Tjmax

SIN

0.2

0.1

D=0.8

DC

0.5

0.05

Average Rectified Forward Current  I

O

  [A]

Forward Power Dissipation  P

F

  [W]

background image

0

t

p

I

O

T

D=t

p

/T

0

V

R

0

2

4

6

8

10

0

20

40

60

80

100

120

140

160

D5SC4M

0.3

Derating Curve

V

R

 = V

RM

/2

SIN

0.2

0.1

D=0.8

DC

0.5

0.05

Case Temperature  Tc  [

°

C]

Average Rectified Forward Current  I

O

  [A]

background image

0

t

p

I

O

T

D=t

p

/T

0

2

4

6

8

10

0

20

40

60

80

100

120

140

160

D5SC4M

0.3

Derating Curve

V

R

 = V

RM

/2

SIN

0.2

0.1

D=0.8

DC

0.5

0.05

0

V

R

Heatsink Temperature  Tf  [

°

C]

Average Rectified Forward Current  I

O

  [A]

background image

Peak Surge Forward Capability

0

20

40

60

80

100

1

10

100

D5SC4M

2

5

20

50

I

FSM

10ms 10ms

1 cycle

Number of Cycles  [cycles]

Peak Surge Forward Current  I

FSM

  [A]

non-repetitive,

sine wave,

Tj=125

°

C before

surge current is applied

background image

t

p

I

RP

0

V

R

0.5I

RP

V

RP

I

R

P

RRSM

 = I

RP

 

×

 V

RP

0

20

40

60

80

100

120

0

50

100

150

SBD

Repetitive Surge Reverse Power Derating Curve

Junction Temperature  Tj  [

°

C]

P

RRSM

 Derating  [%]

background image

0.1

1

10

1

10

100

SBD

Repetitive Surge Reverse Power Capability

Pulse Width  t

p

  [

µ

s]

P

RRSM

(t

p

) / P

RRSM

(t

p

=10

µ

s) Ratio

t

p

I

RP

0

V

R

0.5I

RP

V

RP

I

R

P

RRSM

 = I

RP

 

×

 V

RP